scispace - formally typeset
Search or ask a question
Institution

National University of Defense Technology

EducationChangsha, China
About: National University of Defense Technology is a education organization based out in Changsha, China. It is known for research contribution in the topics: Computer science & Radar. The organization has 39430 authors who have published 40181 publications receiving 358979 citations. The organization is also known as: Guófáng Kēxuéjìshù Dàxué & NUDT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the physics and various manifestations of the generalized Kerker effect, including the progress in the emerging field of meta-optics that focuses on interferences of electromagnetic multipoles of different orders and origins.
Abstract: The original Kerker effect was introduced for a hypothetical magnetic sphere, and initially it did not attract much attention due to a lack of magnetic materials required. Rejuvenated by the recent explosive development of the field of metamaterials and especially its core concept of optically-induced artificial magnetism, the Kerker effect has gained an unprecedented impetus and rapidly pervaded different branches of nanophotonics. At the same time, the concept behind the effect itself has also been significantly expanded and generalized. Here we review the physics and various manifestations of the generalized Kerker effects, including the progress in the emerging field of meta-optics that focuses on interferences of electromagnetic multipoles of different orders and origins. We discuss not only the scattering by individual particles and particle clusters, but also the manipulation of reflection, transmission, diffraction, and absorption for metalattices and metasurfaces, revealing how various optical phenomena observed recently are all ubiquitously related to the Kerker’s concept.

293 citations

Journal ArticleDOI
TL;DR: A dissociation of the DMN into subnetworks is suggested, where persistent abnormal functional connectivity within the anterior subnetwork in recovered MDD subjects may constitute a biomarker of asymptomatic depression and potential for relapse.

292 citations

Journal ArticleDOI
TL;DR: A new diversified DBN is developed through regularizing pretraining and fine-tuning procedures by a diversity promoting prior over latent factors that obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.
Abstract: In the literature of remote sensing, deep models with multiple layers have demonstrated their potentials in learning the abstract and invariant features for better representation and classification of hyperspectral images. The usual supervised deep models, such as convolutional neural networks, need a large number of labeled training samples to learn their model parameters. However, the real-world hyperspectral image classification task provides only a limited number of training samples. This paper adopts another popular deep model, i.e., deep belief networks (DBNs), to deal with this problem. The DBNs allow unsupervised pretraining over unlabeled samples at first and then a supervised fine-tuning over labeled samples. But the usual pretraining and fine-tuning method would make many hidden units in the learned DBNs tend to behave very similarly or perform as “dead” (never responding) or “potential over-tolerant” (always responding) latent factors. These results could negatively affect description ability and thus classification performance of DBNs. To further improve DBN’s performance, this paper develops a new diversified DBN through regularizing pretraining and fine-tuning procedures by a diversity promoting prior over latent factors. Moreover, the regularized pretraining and fine-tuning can be efficiently implemented through usual recursive greedy and back-propagation learning framework. The experiments over real-world hyperspectral images demonstrated that the diversity promoting prior in both pretraining and fine-tuning procedure lead to the learned DBNs with more diverse latent factors, which directly make the diversified DBNs obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.

291 citations

Journal ArticleDOI
TL;DR: The G 0 distribution, which can model multilook SAR images within an extensive range of degree of homogeneity, is adopted as the statistical model of clutter in this paper and is shown to be of good performance and strong practicability.
Abstract: An adaptive and fast constant false alarm rate (CFAR) algorithm based on automatic censoring (AC) is proposed for target detection in high-resolution synthetic aperture radar (SAR) images. First, an adaptive global threshold is selected to obtain an index matrix which labels whether each pixel of the image is a potential target pixel or not. Second, by using the index matrix, the clutter environment can be determined adaptively to prescreen the clutter pixels in the sliding window used for detecting. The G 0 distribution, which can model multilook SAR images within an extensive range of degree of homogeneity, is adopted as the statistical model of clutter in this paper. With the introduction of AC, the proposed algorithm gains good CFAR detection performance for homogeneous regions, clutter edge, and multitarget situations. Meanwhile, the corresponding fast algorithm greatly reduces the computational load. Finally, target clustering is implemented to obtain more accurate target regions. According to the theoretical performance analysis and the experiment results of typical real SAR images, the proposed algorithm is shown to be of good performance and strong practicability.

289 citations

Journal ArticleDOI
TL;DR: A comprehensive evaluation on benchmark data sets reveals MRELBP’s high performance—robust to gray scale variations, rotation changes and noise—but at a low computational cost.
Abstract: Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP’s high performance—robust to gray scale variations, rotation changes and noise—but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

289 citations


Authors

Showing all 39659 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jian Li133286387131
Chi Lin1251313102710
Wei Xu103149249624
Lei Liu98204151163
Xiang Li97147242301
Chang Liu97109939573
Jian Huang97118940362
Tao Wang97272055280
Wei Liu96153842459
Jian Chen96171852917
Wei Wang95354459660
Peng Li95154845198
Jianhong Wu9372636427
Jianhua Zhang9241528085
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

City University of Hong Kong
60.1K papers, 1.7M citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022469
20212,986
20203,468
20193,695