scispace - formally typeset
Search or ask a question
Institution

National University of Defense Technology

EducationChangsha, China
About: National University of Defense Technology is a education organization based out in Changsha, China. It is known for research contribution in the topics: Radar & Synthetic aperture radar. The organization has 39430 authors who have published 40181 publications receiving 358979 citations. The organization is also known as: Guófáng Kēxuéjìshù Dàxué & NUDT.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors integrated imputation and clustering into a unified learning procedure, which does not require that there is at least one complete base kernel matrix over all the samples.
Abstract: Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernel matrices are absent. This paper proposes two simple yet effective algorithms to address this issue. Different from existing approaches where incomplete kernel matrices are first imputed and a standard MKC algorithm is applied to the imputed kernel matrices, our first algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple kernel clustering directly with the presence of incomplete kernel matrices, which are treated as auxiliary variables to be jointly optimized. Our algorithm does not require that there be at least one complete base kernel matrix over all the samples. Also, it adaptively imputes incomplete kernel matrices and combines them to best serve clustering. Moreover, we further improve this algorithm by encouraging these incomplete kernel matrices to mutually complete each other. The three-step iterative algorithm is designed to solve the resultant optimization problems. After that, we theoretically study the generalization bound of the proposed algorithms. Extensive experiments are conducted on 13 benchmark data sets to compare the proposed algorithms with existing imputation-based methods. Our algorithms consistently achieve superior performance and the improvement becomes more significant with increasing missing ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.

235 citations

Journal ArticleDOI
TL;DR: This study demonstrates how public and private data sources that are commonly available for LMICs can be used to provide novel insight into the spatial distribution of poverty, indicating the possibility to estimate and continually monitor poverty rates at high spatial resolution in countries with limited capacity to support traditional methods of data collection.
Abstract: Poverty is one of the most important determinants of adverse health outcomes globally, a major cause of societal instability and one of the largest causes of lost human potential. Traditional approaches to measuring and targeting poverty rely heavily on census data, which in most low- and middle-income countries (LMICs) are unavailable or out-of-date. Alternate measures are needed to complement and update estimates between censuses. This study demonstrates how public and private data sources that are commonly available for LMICs can be used to provide novel insight into the spatial distribution of poverty. We evaluate the relative value of modelling three traditional poverty measures using aggregate data from mobile operators and widely available geospatial data. Taken together, models combining these data sources provide the best predictive power (highest r2 = 0.78) and lowest error, but generally models employing mobile data only yield comparable results, offering the potential to measure poverty more frequently and at finer granularity. Stratifying models into urban and rural areas highlights the advantage of using mobile data in urban areas and different data in different contexts. The findings indicate the possibility to estimate and continually monitor poverty rates at high spatial resolution in countries with limited capacity to support traditional methods of data collection.

234 citations

Proceedings ArticleDOI
01 Aug 2019
TL;DR: This paper proposes both attack and defense techniques for adversarial attacks and shows that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations.
Abstract: Graph deep learning models, such as graph convolutional networks (GCN) achieve state-of-the-art performance for tasks on graph data. However, similar to other deep learning models, graph deep learning models are susceptible to adversarial attacks. However, compared with non-graph data the discrete nature of the graph connections and features provide unique challenges and opportunities for adversarial attacks and defenses. In this paper, we propose techniques for both an adversarial attack and a defense against adversarial attacks. Firstly, we show that the problem of discrete graph connections and the discrete features of common datasets can be handled by using the integrated gradient technique that accurately determines the effect of changing selected features or edges while still benefiting from parallel computations. In addition, we show that an adversarially manipulated graph using a targeted attack statistically differs from un-manipulated graphs. Based on this observation, we propose a defense approach which can detect and recover a potential adversarial perturbation. Our experiments on a number of datasets show the effectiveness of the proposed techniques.

232 citations

Journal ArticleDOI
TL;DR: A novel decomposition-based EMO algorithm called multiobjective evolutionary algorithm based on decomposition LWS (MOEA/D-LWS) is proposed in which the WS method is applied in a local manner, and is a competitive algorithm for many-objective optimization.
Abstract: Decomposition via scalarization is a basic concept for multiobjective optimization. The weighted sum (WS) method, a frequently used scalarizing method in decomposition-based evolutionary multiobjective (EMO) algorithms, has good features such as computationally easy and high search efficiency, compared to other scalarizing methods. However, it is often criticized by the loss of effect on nonconvex problems. This paper seeks to utilize advantages of the WS method, without suffering from its disadvantage, to solve many-objective problems. A novel decomposition-based EMO algorithm called multiobjective evolutionary algorithm based on decomposition LWS (MOEA/D-LWS) is proposed in which the WS method is applied in a local manner. That is, for each search direction, the optimal solution is selected only amongst its neighboring solutions. The neighborhood is defined using a hypercone. The apex angle of a hypervcone is determined automatically in a priori . The effectiveness of MOEA/D-LWS is demonstrated by comparing it against three variants of MOEA/D, i.e., MOEA/D using Chebyshev method, MOEA/D with an adaptive use of WS and Chebyshev method, MOEA/D with a simultaneous use of WS and Chebyshev method, and four state-of-the-art many-objective EMO algorithms, i.e., preference-inspired co-evolutionary algorithm, hypervolume-based evolutionary, $\boldsymbol {\theta }$ -dominance-based algorithm, and SPEA2+SDE for the WFG benchmark problems with up to seven conflicting objectives. Experimental results show that MOEA/D-LWS outperforms the comparison algorithms for most of test problems, and is a competitive algorithm for many-objective optimization.

231 citations

Journal ArticleDOI
TL;DR: In this article, the authors mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers.
Abstract: The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and significant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers, are reviewed and analyzed.

229 citations


Authors

Showing all 39659 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jian Li133286387131
Chi Lin1251313102710
Wei Xu103149249624
Lei Liu98204151163
Xiang Li97147242301
Chang Liu97109939573
Jian Huang97118940362
Tao Wang97272055280
Wei Liu96153842459
Jian Chen96171852917
Wei Wang95354459660
Peng Li95154845198
Jianhong Wu9372636427
Jianhua Zhang9241528085
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

City University of Hong Kong
60.1K papers, 1.7M citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022468
20212,986
20203,468
20193,695