scispace - formally typeset
Search or ask a question
Institution

National University of Defense Technology

EducationChangsha, China
About: National University of Defense Technology is a education organization based out in Changsha, China. It is known for research contribution in the topics: Computer science & Radar. The organization has 39430 authors who have published 40181 publications receiving 358979 citations. The organization is also known as: Guófáng Kēxuéjìshù Dàxué & NUDT.


Papers
More filters
Journal ArticleDOI
TL;DR: A synthetic aperture radar (SAR) automatic target recognition approach based on a global scattering center model that is much easier to implement and less sensitive to nonideal factors such as noise and pose estimation error than point-to-point matching is proposed.
Abstract: This paper proposes a synthetic aperture radar (SAR) automatic target recognition approach based on a global scattering center model. The scattering center model is established offline using range profiles at multiple viewing angles, so the original data amount is much less than that required for establishing SAR image templates. Scattering center features at different target poses can be conveniently predicted by this model. Moreover, the model can be modified to predict features for various target configurations. For the SAR image to be classified, regional features in different levels are extracted by thresholding and morphological operations. The regional features will be matched to the predicted scattering center features of different targets to arrive at a decision. This region-to-point matching is much easier to implement and is less sensitive to nonideal factors such as noise and pose estimation error than point-to-point matching. A matching scheme going through from coarse to fine regional features in the inner cycle and going through different pose hypotheses in the outer cycle is designed to improve the efficiency and robustness of the classifier. Experiments using both data predicted by a high-frequency electromagnetic (EM) code and data measured in the MSTAR program verify the validity of the method.

217 citations

Journal ArticleDOI
F. P. An1, A. B. Balantekin2, H. R. Band3, M. Bishai4  +227 moreInstitutions (39)
TL;DR: Improvements in energy calibration limited variations between detectors to 0.2%.
Abstract: We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^5 GW_(th) ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^(241)Am−^(13)C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin 2^2θ_(13) and |Δm^2_(ee)| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^2 2θ_(13)=0.084±0.005 and |Δm^2_(ee)|=(2.42±0.11)×10^(−3) eV^2 in the three-neutrino framework.

217 citations

Journal ArticleDOI
TL;DR: A dynamically optimized steady-state visually evoked potential brain-computer interface (BCI) system with enhanced performance relative to previous SSVEP BCIs in terms of the number of items selectable on the interface, accuracy, and speed, and a posterior processing after the canonical correlation analysis approach to improve spelling accuracy is designed.
Abstract: The aim of this study was to design a dynamically optimized steady-state visually evoked potential (SSVEP) brain-computer interface (BCI) system with enhanced performance relative to previous SSVEP BCIs in terms of the number of items selectable on the interface, accuracy, and speed. In this approach, the row/column (RC) paradigm was employed in a SSVEP speller to increase the number of items. The target is detected by subsequently determining the row and column coordinates. To improve spelling accuracy, we added a posterior processing after the canonical correlation analysis (CCA) approach to reduce the interfrequency variation between different subjects and named the new signal processing method CCA-RV, and designed a real-time biofeedback mechanism to increase attention on the visual stimuli. To achieve reasonable online spelling speed, both fixed and dynamic approaches for setting the optimal stimulus duration were implemented and compared. Experimental results for 11 subjects suggest that the CCA-RV method and the real-time biofeedback effectively increased accuracy compared with CCA and the absence of real-time feedback, respectively. In addition, both optimization approaches for setting stimulus duration achieved reasonable online spelling performance. However, the dynamic optimization approach yielded a higher practical information transfer rate (PITR) than the fixed optimization approach. The average online PITR achieved by the proposed adaptive SSVEP speller, including the time required for breaks between selections and error correction, was 41.08 bit/min. These results indicate that our BCI speller is promising for use in SSVEP-based BCI applications.

216 citations

Journal ArticleDOI
TL;DR: In this article, the transverse jet in supersonic crossflows has been summarized systematically from four aspects, namely single injection, multiport injection, interaction between jet and vortex generator, and interaction between the jet and shock wave.

216 citations

Journal ArticleDOI
TL;DR: In this article, a novel frequency-selective rasorber (FSR) is proposed, which has a nearly transparent window between two absorption bands, and the insertion loss of FSR at the resonant frequency of lossless bandpass FSS is proven to be only related to the equivalent impedance of the resistive sheet.
Abstract: A novel frequency-selective rasorber (FSR) is proposed in this paper which has a nearly transparent window between two absorption bands. The FSR consists of a resistive sheet and a bandpass frequency-selective surface (FSS). The impedance conditions of absorption/transmission for both the resistive sheet and the bandpass FSS are theoretically derived based on equivalent circuit analysis. The insertion loss of FSR at the resonant frequency of lossless bandpass FSS is proven to be only related to the equivalent impedance of the resistive sheet. When the resistive sheet is in parallel resonance at the passband, a nearly transparent window can be achieved regardless of lossy properties. An interdigital resonator (IR) is designed to realize parallel resonance in the resistive element by extending one finger of a strip-type interdigital capacitor to connect the two separate parts of the capacitor. The IR is equivalent to a parallel LC circuit. Lumped resistors are loaded around the IR to absorb the incident wave at lower and upper absorption bands. With the bandpass FSS as the ground plane, the absorption performances at both the lower and upper bands around the resonant frequency are improved compared to a metal-plane-backed absorber structure. The FSR passband is designed at 10 GHz with an insertion loss of 0.2 dB. The band with a reflection coefficient below −10 dB extends from 4.8 to 15.5 GHz. A further extension to dual-polarized FSR is designed, fabricated, and measured to validate the proposed design.

215 citations


Authors

Showing all 39659 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jian Li133286387131
Chi Lin1251313102710
Wei Xu103149249624
Lei Liu98204151163
Xiang Li97147242301
Chang Liu97109939573
Jian Huang97118940362
Tao Wang97272055280
Wei Liu96153842459
Jian Chen96171852917
Wei Wang95354459660
Peng Li95154845198
Jianhong Wu9372636427
Jianhua Zhang9241528085
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

City University of Hong Kong
60.1K papers, 1.7M citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022469
20212,986
20203,468
20193,695