scispace - formally typeset
Search or ask a question
Institution

National University of Defense Technology

EducationChangsha, China
About: National University of Defense Technology is a education organization based out in Changsha, China. It is known for research contribution in the topics: Computer science & Radar. The organization has 39430 authors who have published 40181 publications receiving 358979 citations. The organization is also known as: Guófáng Kēxuéjìshù Dàxué & NUDT.


Papers
More filters
Journal ArticleDOI
27 Apr 2018-PLOS ONE
TL;DR: Hoaxy as discussed by the authors is an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter and quantifies how effectively the network can be disrupted by penalizing the most central nodes.
Abstract: Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy captures public tweets that include links to articles from low-credibility and fact-checking sources. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.

183 citations

Journal ArticleDOI
TL;DR: The core idea is to incorporate expert knowledge of target scattering mechanism interpretation and polarimetric feature mining to assist deep CNN classifier training and improve the final classification performance.
Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification is an important application. Advanced deep learning techniques represented by deep convolutional neural network (CNN) have been utilized to enhance the classification performance. One current challenge is how to adapt deep CNN classifier for PolSAR classification with limited training samples, while keeping good generalization performance. This letter attempts to contribute to this problem. The core idea is to incorporate expert knowledge of target scattering mechanism interpretation and polarimetric feature mining to assist deep CNN classifier training and improve the final classification performance. A polarimetric-feature-driven deep CNN classification scheme is established. Both classical roll-invariant polarimetric features and hidden polarimetric features in the rotation domain are used to drive the proposed deep CNN model. Comparison studies validate the efficiency and superiority of the proposal. For the benchmark AIRSAR data, the proposed method achieves the state-of-the-art classification accuracy. Meanwhile, the convergence speed from the proposed polarimetric-feature-driven CNN approach is about 2.3 times faster than the normal CNN method. For multitemporal UAVSAR data sets, the proposed scheme achieves comparably high classification accuracy as the normal CNN method for train-used temporal data, while for train-not-used data it obtains an average of 4.86% higher overall accuracy than the normal CNN method. Furthermore, the proposed strategy can also produce very promising classification accuracy even with very limited training samples.

181 citations

Journal ArticleDOI
TL;DR: This work proposes dynamic Bloom filters to represent dynamic sets, as well as static sets and design necessary item insertion, membership query, item deletion, and filter union algorithms.
Abstract: A Bloom filter is an effective, space-efficient data structure for concisely representing a set, and supporting approximate membership queries. Traditionally, the Bloom filter and its variants just focus on how to represent a static set and decrease the false positive probability to a sufficiently low level. By investigating mainstream applications based on the Bloom filter, we reveal that dynamic data sets are more common and important than static sets. However, existing variants of the Bloom filter cannot support dynamic data sets well. To address this issue, we propose dynamic Bloom filters to represent dynamic sets, as well as static sets and design necessary item insertion, membership query, item deletion, and filter union algorithms. The dynamic Bloom filter can control the false positive probability at a low level by expanding its capacity as the set cardinality increases. Through comprehensive mathematical analysis, we show that the dynamic Bloom filter uses less expected memory than the Bloom filter when representing dynamic sets with an upper bound on set cardinality, and also that the dynamic Bloom filter is more stable than the Bloom filter due to infrequent reconstruction when addressing dynamic sets without an upper bound on set cardinality. Moreover, the analysis results hold in stand-alone applications, as well as distributed applications.

181 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the system performance obtained by the proposed scheme can outperform the benchmark schemes, and the optimal parameter selections are concluded in the experimental discussion.
Abstract: Unmanned aerial vehicle (UAV) has been witnessed as a promising approach for offering extensive coverage and additional computation capability to smart mobile devices (SMDs), especially in the scenario without available infrastructures. In this paper, a UAV-assisted mobile edge computing system with stochastic computation tasks is investigated. The system aims to minimize the average weighted energy consumption of SMDs and the UAV, subject to the constraints on computation offloading, resource allocation, and flying trajectory scheduling of the UAV. Due to nonconvexity of the problem and the time coupling of variables, a Lyapunov-based approach is applied to analyze the task queue, and the energy consumption minimization problem is decomposed into three manageable subproblems. Furthermore, a joint optimization algorithm is proposed to iteratively solve the problem. Simulation results demonstrate that the system performance obtained by the proposed scheme can outperform the benchmark schemes, and the optimal parameter selections are concluded in the experimental discussion.

180 citations

Journal ArticleDOI
TL;DR: A fast gradient descent (FGD) is proposed to overcome the problem of slow multiplicative update rule in NPAF and uses the Newton method to search the optimal step size, and thus converges faster than MUR.
Abstract: In this paper, we present a non-negative patch alignment framework (NPAF) to unify popular non-negative matrix factorization (NMF) related dimension reduction algorithms. It offers a new viewpoint to better understand the common property of different NMF algorithms. Although multiplicative update rule (MUR) can solve NPAF and is easy to implement, it converges slowly. Thus, we propose a fast gradient descent (FGD) to overcome the aforementioned problem. FGD uses the Newton method to search the optimal step size, and thus converges faster than MUR. Experiments on synthetic and real-world datasets confirm the efficiency of FGD compared with MUR for optimizing NPAF. Based on NPAF, we develop non-negative discriminative locality alignment (NDLA). Experiments on face image and handwritten datasets suggest the effectiveness of NDLA in classification tasks and its robustness to image occlusions, compared with representative NMF-related dimension reduction algorithms.

180 citations


Authors

Showing all 39659 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Jian Li133286387131
Chi Lin1251313102710
Wei Xu103149249624
Lei Liu98204151163
Xiang Li97147242301
Chang Liu97109939573
Jian Huang97118940362
Tao Wang97272055280
Wei Liu96153842459
Jian Chen96171852917
Wei Wang95354459660
Peng Li95154845198
Jianhong Wu9372636427
Jianhua Zhang9241528085
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

City University of Hong Kong
60.1K papers, 1.7M citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022469
20212,986
20203,468
20193,695