scispace - formally typeset
Search or ask a question
Institution

National University of Río Negro

EducationViedma, Argentina
About: National University of Río Negro is a education organization based out in Viedma, Argentina. It is known for research contribution in the topics: Population & Pollinator. The organization has 606 authors who have published 1181 publications receiving 15230 citations. The organization is also known as: UNRN.


Papers
More filters
Journal ArticleDOI
29 Mar 2013-Science
TL;DR: Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation.
Abstract: The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.

1,881 citations

Journal ArticleDOI
08 Dec 2016-Nature
TL;DR: There are well-documented declines in some wild and managed pollinators in several regions of the world, however, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.
Abstract: Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

1,121 citations

Journal ArticleDOI
13 Dec 2019-Science
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
Abstract: The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.

913 citations

Journal ArticleDOI
TL;DR: It is shown that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use.
Abstract: Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

620 citations

Journal ArticleDOI
Matteo Dainese1, Emily A. Martin1, Marcelo A. Aizen2, Matthias Albrecht, Ignasi Bartomeus3, Riccardo Bommarco4, Luísa G. Carvalheiro5, Luísa G. Carvalheiro6, Rebecca Chaplin-Kramer7, Vesna Gagic8, Lucas Alejandro Garibaldi9, Jaboury Ghazoul10, Heather Grab11, Mattias Jonsson4, Daniel S. Karp12, Christina M. Kennedy13, David Kleijn14, Claire Kremen15, Douglas A. Landis16, Deborah K. Letourneau17, Lorenzo Marini18, Katja Poveda11, Romina Rader19, Henrik G. Smith20, Teja Tscharntke21, Georg K.S. Andersson20, Isabelle Badenhausser22, Isabelle Badenhausser23, Svenja Baensch21, Antonio Diego M. Bezerra24, Felix J.J.A. Bianchi14, Virginie Boreux10, Virginie Boreux25, Vincent Bretagnolle22, Berta Caballero-López, Pablo Cavigliasso26, Aleksandar Ćetković27, Natacha P. Chacoff28, Alice Classen1, Sarah Cusser29, Felipe D. da Silva e Silva30, G. Arjen de Groot14, Jan H. Dudenhöffer31, Johan Ekroos20, Thijs P.M. Fijen14, Pierre Franck23, Breno Magalhães Freitas24, Michael P.D. Garratt32, Claudio Gratton33, Juliana Hipólito34, Juliana Hipólito9, Andrea Holzschuh1, Lauren Hunt35, Aaron L. Iverson11, Shalene Jha36, Tamar Keasar37, Tania N. Kim38, Miriam Kishinevsky37, Björn K. Klatt21, Björn K. Klatt20, Alexandra-Maria Klein25, Kristin M. Krewenka39, Smitha Krishnan40, Smitha Krishnan10, Ashley E. Larsen41, Claire Lavigne23, Heidi Liere42, Bea Maas43, Rachel E. Mallinger44, Eliana Martinez Pachon, Alejandra Martínez-Salinas45, Timothy D. Meehan46, Matthew G. E. Mitchell15, Gonzalo Alberto Roman Molina47, Maike Nesper10, Lovisa Nilsson20, Megan E. O'Rourke48, Marcell K. Peters1, Milan Plećaš27, Simon G. Potts33, Davi de L. Ramos, Jay A. Rosenheim12, Maj Rundlöf20, Adrien Rusch49, Agustín Sáez2, Jeroen Scheper14, Matthias Schleuning, Julia Schmack50, Amber R. Sciligo51, Colleen L. Seymour, Dara A. Stanley52, Rebecca Stewart20, Jane C. Stout53, Louis Sutter, Mayura B. Takada54, Hisatomo Taki, Giovanni Tamburini25, Matthias Tschumi, Blandina Felipe Viana55, Catrin Westphal21, Bryony K. Willcox19, Stephen D. Wratten56, Akira Yoshioka57, Carlos Zaragoza-Trello3, Wei Zhang58, Yi Zou59, Ingolf Steffan-Dewenter1 
University of Würzburg1, National University of Comahue2, Spanish National Research Council3, Swedish University of Agricultural Sciences4, University of Lisbon5, Universidade Federal de Goiás6, Stanford University7, Commonwealth Scientific and Industrial Research Organisation8, National University of Río Negro9, ETH Zurich10, Cornell University11, University of California, Davis12, The Nature Conservancy13, Wageningen University and Research Centre14, University of British Columbia15, Great Lakes Bioenergy Research Center16, University of California, Santa Cruz17, University of Padua18, University of New England (Australia)19, Lund University20, University of Göttingen21, University of La Rochelle22, Institut national de la recherche agronomique23, Federal University of Ceará24, University of Freiburg25, Concordia University Wisconsin26, University of Belgrade27, National University of Tucumán28, Michigan State University29, University of Brasília30, University of Greenwich31, University of Reading32, University of Wisconsin-Madison33, National Institute of Amazonian Research34, Boise State University35, University of Texas at Austin36, University of Haifa37, Kansas State University38, University of Hamburg39, Bioversity International40, University of California, Santa Barbara41, Seattle University42, University of Vienna43, University of Florida44, Centro Agronómico Tropical de Investigación y Enseñanza45, National Audubon Society46, University of Buenos Aires47, Virginia Tech48, University of Bordeaux49, University of Auckland50, University of California, Berkeley51, University College Dublin52, Trinity College, Dublin53, University of Tokyo54, Federal University of Bahia55, Lincoln University (New Zealand)56, National Institute for Environmental Studies57, International Food Policy Research Institute58, Xi'an Jiaotong-Liverpool University59
TL;DR: Using a global database from 89 studies (with 1475 locations), the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change is partitioned.
Abstract: Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.

434 citations


Authors

Showing all 620 results

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202226
2021183
2020159
2019133
2018113