scispace - formally typeset
Search or ask a question

Showing papers by "National University of Singapore published in 2005"


Journal ArticleDOI
TL;DR: This analysis suggests that the total phenols assay by FCR be used to quantify an antioxidant's reducing capacity and the ORAC assay to quantify peroxyl radical scavenging capacity, to comprehensively study different aspects of antioxidants.
Abstract: This review summarizes the multifaceted aspects of antioxidants and the basic kinetic models of inhibited autoxidation and analyzes the chemical principles of antioxidant capacity assays. Depending upon the reactions involved, these assays can roughly be classified into two types: assays based on hydrogen atom transfer (HAT) reactions and assays based on electron transfer (ET). The majority of HAT-based assays apply a competitive reaction scheme, in which antioxidant and substrate compete for thermally generated peroxyl radicals through the decomposition of azo compounds. These assays include inhibition of induced low-density lipoprotein autoxidation, oxygen radical absorbance capacity (ORAC), total radical trapping antioxidant parameter (TRAP), and crocin bleaching assays. ET-based assays measure the capacity of an antioxidant in the reduction of an oxidant, which changes color when reduced. The degree of color change is correlated with the sample's antioxidant concentrations. ET-based assays include th...

5,354 citations


Journal ArticleDOI
TL;DR: It is found that anticipated reciprocal relationships affect individuals' attitudes toward knowledge sharing while both sense of self-worth and organizational climate affect subjective norms, and anticipated extrinsic rewards exert a negative effect on individuals' knowledge-sharing attitudes.
Abstract: Individuals' knowledge does not transform easily into organizational knowledge even with the implementation of knowledge repositories. Rather, individuals tend to hoard knowledge for various reasons. The aim of this study is to develop an integrative understanding of the factors supporting or inhibiting individuals' knowledge-sharing intentions. We employ as our theoretical framework the theory of reasoned action (TRA), and augment it with extrinsic motivators, social-psychological forces and organizational climate factors that are believed to influence individuals' knowledge- sharing intentions. Through a field survey of 154 managers from 27 Korean organizations, we confirm our hypothesis that attitudes toward and subjective norms with regard to knowledge sharing as well as organizational climate affect individuals' intentions to share knowledge. Additionally, we find that anticipated reciprocal relationships affect individuals' attitudes toward knowledge sharing while both sense of self-worth and organizational climate affect subjective norms. Contrary to common belief, we find anticipated extrinsic rewards exert a negative effect on individuals' knowledge-sharing attitudes.

3,880 citations


Journal ArticleDOI
Piero Carninci, Takeya Kasukawa1, Shintaro Katayama, Julian Gough  +194 moreInstitutions (36)
02 Sep 2005-Science
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Abstract: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

3,412 citations


Journal ArticleDOI
TL;DR: It can be seen that extrinsic benefits (reciprocity and organizational reward) impact EKR usage contingent on particular contextual factors whereas the effects of intrinsic benefits (knowledge self-efficacy and enjoyment in helping others) on E KR usage are not moderated by contextual factors.
Abstract: Organizations are attempting to leverage their knowledge resources by employing knowledge management (KM) systems, a key form of which are electronic knowledge repositories (EKRs). A large number of KM initiatives fail due to the reluctance of employees to share knowledge through these systems. Motivated by such concerns, this study formulates and tests a theoretical model to explain EKR usage by knowledge contributors. The model employs social exchange theory to identify cost and benefit factors affecting EKR usage, and social capital theory to account for the moderating influence of contextual factors. The model is validated through a large-scale survey of public sector organizations. The results reveal that knowledge self-efficacy and enjoyment in helping others significantly impact EKR usage by knowledge contributors. Contextual factors (generalized trust, pro-sharing norms, and identification) moderate the impact of codification effort, reciprocity, and organizational reward on EKR usage, respectively. It can be seen that extrinsic benefits (reciprocity and organizational reward) impact EKR usage contingent on particular contextual factors whereas the effects of intrinsic benefits (knowledge self-efficacy and enjoyment in helping others) on EKR usage are not moderated by contextual factors. The loss of knowledge power and image do not appear to impact EKR usage by knowledge contributors. Besides contributing to theory building in KM, the results of this study inform KM practice.

2,636 citations


Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: It is demonstrated that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers, revealing that electrons are considerably more mobile in these materials than previously thought.
Abstract: Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes1: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity2,3,4 or low-bandgap5 organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10-3 to 10-2 cm2 V-1 s-1 have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor–dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.

2,191 citations


Journal ArticleDOI
TL;DR: The aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering after being evaluated in vitro using neural stem cells as a model cell line.

1,764 citations


Journal ArticleDOI
TL;DR: The authors used an augmented Cobb-Douglas production to explore firm formation and technological innovation as separate determinants of growth, finding that only high growth potential entrepreneurship has a significant impact on economic growth.
Abstract: Studies on the impact of technological innovation on growth have been largely mute on the role of␣new firm formation. Using cross-sectional data on the 37 countries participating in GEM 2002, this paper uses an augmented Cobb–Douglas production to explore firm formation and technological innovation as separate determinants of growth. One area of interest is the contrast between different types of entrepreneurial activities as measured using GEM Total Entrepreneurial Activity (TEA) rates – high growth potential TEA, necessity TEA, opportunity TEA and overall TEA. Of the four types of entrepreneurship, only high growth potential entrepreneurship is found to have a significant impact on economic growth. This finding is consistent with extant findings in the literature that it is fast growing new firms, not new firms in general, that accounted for most of the new job creation by small and medium enterprises in advanced countries.

1,395 citations


Journal ArticleDOI
TL;DR: It is highly feasible for nanoparticles of biodegradable polymers to be applied to promote oral chemotherapy by using Caco-2 cells, showing that surface modification of PLGA nanoparticles with vitamin E TPGS notably improved the cellular uptake.

1,354 citations


Journal ArticleDOI
Najib M. El-Sayed1, Peter J. Myler2, Peter J. Myler3, Daniella Castanheira Bartholomeu4, Daniel Nilsson5, Gautam Aggarwal2, Anh-Nhi Tran5, Elodie Ghedin1, Elizabeth A. Worthey2, Arthur L. Delcher, Gaëlle Blandin4, Scott J. Westenberger6, Elisabet Caler4, Gustavo C. Cerqueira7, Carole Branche5, Brian J. Haas4, Atashi Anupama2, Erik Arner5, Lena Åslund8, Philip Attipoe2, Esteban J. Bontempi5, Frédéric Bringaud9, Peter Burton10, Eithon Cadag2, David A. Campbell6, Mark Carrington11, Jonathan Crabtree4, Hamid Darban5, José Franco da Silveira12, Pieter J. de Jong13, Kimberly Edwards5, Paul T. Englund14, Gholam Fazelina2, Tamara Feldblyum4, Marcela Ferella5, Alberto C.C. Frasch15, Keith Gull16, David Horn17, Lihua Hou4, Yiting Huang2, Ellen Kindlund5, Michele M. Klingbeil18, Sindy Kluge5, Hean Koo4, Daniela R. Lacerda19, Mariano J. Levin20, Hernan Lorenzi20, Tin Louie2, Carlos Renato Machado7, Richard McCulloch10, Alan McKenna5, Yumi Mizuno5, Jeremy C. Mottram10, Siri Nelson2, Stephen Ochaya5, Kazutoyo Osoegawa13, Grace Pai4, Marilyn Parsons2, Marilyn Parsons3, Martin Pentony2, Ulf Pettersson8, Mihai Pop4, José Luis Ramírez21, Joel Rinta2, Laura Robertson2, Steven L. Salzberg, Daniel O. Sánchez15, Amber Seyler2, Reuben Sunil Kumar Sharma11, Jyoti Shetty4, Anjana J. Simpson4, Ellen Sisk2, Martti T. Tammi22, Martti T. Tammi5, Rick L. Tarleton23, Santuza M. R. Teixeira7, Susan Van Aken4, Christy Vogt2, Pauline N. Ward10, Bill Wickstead16, Jennifer R. Wortman4, Owen White4, Claire M. Fraser4, Kenneth Stuart3, Kenneth Stuart2, Björn Andersson5 
15 Jul 2005-Science
TL;DR: Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
Abstract: Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.

1,349 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared various index decomposition analysis methods and concluded that the logarithmic mean divisia index method is the preferred method for most potential users, providing a practical guide that includes the general formulation process, summary tables for easy reference and examples.

1,201 citations


Journal ArticleDOI
TL;DR: Novel analytical approaches — in particular, liquid chromatography and mass spectrometry — for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.
Abstract: The crucial role of lipids in cell, tissue and organ physiology is demonstrated by a large number of genetic studies and by many human diseases that involve the disruption of lipid metabolic enzymes and pathways. Examples of such diseases include cancer, diabetes, as well as neurodegenerative and infectious diseases. So far, the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids, which is largely due to the complexity of lipids and the lack of powerful tools for their analysis. Novel analytical approaches--in particular, liquid chromatography and mass spectrometry--for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.

Journal ArticleDOI
TL;DR: By specific knockdown of Oct4 and Sox2 mRNA by RNA interference in embryonic stem cells, this work provides genetic evidence for a link between Oct4, Sox2, and the Nanog promoter, extending the understanding of the pluripotent genetic regulatory network within which the Sox2-Oct4 complex are at the top of the regulatory hierarchy.

Journal ArticleDOI
TL;DR: A backstepping based control design for a class of nonlinear systems in strict-feedback form with arbitrary uncertainty is developed and is able to eliminate the problem of "explosion of complexity" inherent in the existing method.
Abstract: The dynamic surface control (DSC) technique was developed recently by Swaroop et al. This technique simplified the backstepping design for the control of nonlinear systems in strict-feedback form by overcoming the problem of "explosion of complexity." It was later extended to adaptive backstepping design for nonlinear systems with linearly parameterized uncertainty. In this paper, by incorporating this design technique into a neural network based adaptive control design framework, we have developed a backstepping based control design for a class of nonlinear systems in strict-feedback form with arbitrary uncertainty. Our development is able to eliminate the problem of "explosion of complexity" inherent in the existing method. In addition, a stability analysis is given which shows that our control law can guarantee the uniformly ultimate boundedness of the solution of the closed-loop system, and make the tracking error arbitrarily small.

Journal ArticleDOI
TL;DR: A definition for cross-layer design is suggested, the basic types of cross- layer design with examples drawn from the literature are discussed, and the initial proposals on howcross-layer interactions may be implemented are categorized.
Abstract: Of late, there has been an avalanche of cross-layer design proposals for wireless networks. A number of researchers have looked at specific aspects of network performance and, approaching cross-layer design via their interpretation of what it implies, have presented several cross-layer design proposals. These proposals involve different layers of the protocol stack, and address both cellular and ad hoc networks. There has also been work relating to the implementation of cross-layer interactions. It is high time that these various individual efforts be put into perspective and a more holistic view be taken. In this article, we take a step in that direction by presenting a survey of the literature in the area of cross-layer design, and by taking stock of the ongoing work. We suggest a definition for cross-layer design, discuss the basic types of cross-layer design with examples drawn from the literature, and categorize the initial proposals on how cross-layer interactions may be implemented. We then highlight some open challenges and new opportunities for cross-layer design. Designers presenting cross-layer design proposals can start addressing these as they move ahead.

Journal ArticleDOI
TL;DR: The results suggest the potential of using composite gelatin/PCL fibrous scaffolds for engineering three-dimensional tissues as a promising scaffold for bone-marrow stromal cell culture.
Abstract: In this article, ultrafine gelatin (Gt) fibers were successfully produced with the use of the electrical spinning or electrospinning technique. A fluorinated alcohol of 2,2,2-trifluoroethanol (TFE) was used as the dissolving solvent. The morphology of the electrospun gelatin fibers was found to be dependent on the alteration of gelatin concentration ranging from 2.5% w/v to 12.5% w/v at 2.5% increment intervals. Based on the electrospun gelatin fibers obtained, 10% w/v gelatin/TFE solution was selected and mixed with 10% w/v poly(epsilon-caprolactone) (PCL) in TFE at a ratio of 50:50 and co-electrospun to produce gelatin/PCL composite membranes. Contact-angle measurement and tensile tests indicated that the gelatin/PCL complex fibrous membrane exhibited improved mechanical properties as well as more favorable wettability than that obtained from either gelatin or PCL alone. The gelatin/PCL fibrous membranes were further investigated as a promising scaffold for bone-marrow stromal cell (BMSC) culture. Scanning electron microscopy (SEM) and laser confocal microscopy observations showed that the cells could not only favorably attach and grow well on the surface of these scaffolds, but were also able to migrate inside the scaffold up to 114 microm within 1 week of culture. These results suggest the potential of using composite gelatin/PCL fibrous scaffolds for engineering three-dimensional tissues.

Journal ArticleDOI
TL;DR: This review covers the preparation and modification of polymeric nanofiber matrix in the development of future tissue-engineering scaffolds and major emphasis is given to the development and applications of aligned, core shell-structured, or surface-functionalized polymer nanofibers.
Abstract: Tissue-engineering scaffolds should be analogous to native extracellular matrix (ECM) in terms of both chemical composition and physical structure Polymeric nanofiber matrix is similar, with its nanoscaled nonwoven fibrous ECM proteins, and thus is a candidate ECM-mimetic material Techniques such as electrospinning to produce polymeric nanofibers have stimulated researchers to explore the application of nanofiber matrix as a tissue-engineering scaffold This review covers the preparation and modification of polymeric nanofiber matrix in the development of future tissue-engineering scaffolds Major emphasis is also given to the development and applications of aligned, core shell-structured, or surface-functionalized polymer nanofibers The potential application of polymer nanofibers extends far beyond tissue engineering Owing to their high surface area, functionalized polymer nanofibers will find broad applications as drug delivery carriers, biosensors, and molecular filtration membranes in future

Journal ArticleDOI
TL;DR: Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural products for which clinical trials have been halted or discontinued since 2005.

Journal ArticleDOI
TL;DR: A Service-Oriented Context-Aware Middleware architecture for the building and rapid prototyping of context-aware services and a formal context model based on ontology using Web Ontology Language to address issues including semantic representation, context reasoning, context classification and dependency are proposed.

Journal ArticleDOI
TL;DR: It is shown that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3′-specific fragments, which indicates that auxin induction ofmiR164 provides a homeostatic mechanism to clear Nac1 mRNA to downregulate auxin signals.
Abstract: Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain‐encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 39specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wildtype plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 39 fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

Journal ArticleDOI
TL;DR: Comparing and contrast chemomechanical pathways whereby intracellular structural rearrangements lead to global changes in mechanical deformability of the cell, and examining the biochemical conditions mediating increases or decreases in modulus, and their implications for disease progression are compared.

Journal ArticleDOI
TL;DR: The prevalent risks of glaucoma were higher in myopic adults, and risks of chorioretinal abnormalities such as retinal detachment, choriatorinal atrophy and lacquer cracks increased with severity of myopia and greater axial length.

Journal ArticleDOI
TL;DR: Results of moderated regression analysis revealed that different processes underlie the conflict and facilitation components and gender had only a limited moderating influence on the relationships between the antecedents and the components of work-family balance.
Abstract: This study examined antecedents and outcomes of a fourfold taxonomy of work-family balance in terms of the direction of influence (work-family vs. family-work) and type of effect (conflict vs. facilitation). Respondents were full-time employed parents in India. Confirmatory factor analysis results provided evidence for the discriminant validity of M. R. Frone's (2003) fourfold taxonomy of work-family balance. Results of moderated regression analysis revealed that different processes underlie the conflict and facilitation components. Furthermore, gender had only a limited moderating influence on the relationships between the antecedents and the components of work-family balance. Last, work-family facilitation was related to the work outcomes of job satisfaction and organizational commitment.

Journal ArticleDOI
TL;DR: It is suggested that H2S exhibits proinflammatory activity in endotoxic shock and a new approach to the development of novel drugs for this condition is suggested.
Abstract: Hydrogen sulfide (H2S) is synthesized in the body from L-cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 microM to 40.9 +/- 0.6 microM (n=6, P<0.05) while H2S formation from added L-cysteine was increased in both liver and kidney. CSE gene expression was also increased in both liver (94.2+/-2.7%, n=6, P<0.05) and kidney (77.5+/-3.2%, n=6, P<0.05). LPS injection also elevated lung (148.2+/-2.6%, n=6, P<0.05) and kidney (78.8+/-8.2%, n=6, P<0.05) myeloperoxidase (MPO, a marker of tissue neutrophil infiltration) activity alongside histological evidence of lung, liver, and kidney tissue inflammatory damage. Plasma nitrate/nitrite (NOx) concentration was additionally elevated in a time- and dose-dependent manner in LPS-injected animals. To examine directly the possible proinflammatory effect of H2S, mice were administered sodium hydrosulfide (H2S donor drug, 14 micromol/kg ip) that resulted in marked histological signs of lung inflammation, increased lung and liver MPO activity, and raised plasma TNF-alpha concentration (4.6+/-1.4 ng/ml, n=6). In contrast, DL-propargylglycine (CSE inhibitor, 50 mg/kg ip), exhibited marked anti-inflammatory activity as evidenced by reduced lung and liver MPO activity, and ameliorated lung and liver tissue damage. In separate experiments, we also detected significantly higher (150.5+/-43.7 microM c.f. 43.8+/-5.1 microM, n=5, P<0.05) plasma H2S levels in humans with septic shock. These findings suggest that H2S exhibits proinflammatory activity in endotoxic shock and suggest a new approach to the development of novel drugs for this condition.

Journal ArticleDOI
TL;DR: This paper provides a concise and timely survey on analysis and synthesis of switchedlinear control systems, and presents the basic concepts and main properties of switched linear systems in a systematic manner.

Journal ArticleDOI
TL;DR: A positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells is uncovered.
Abstract: Embryonic stem cells (ESCs) are pluripotent cells that can either self-renew or differentiate into many cell types. Oct4 and Sox2 are transcription factors essential to the pluripotent and self-renewing phenotypes of ESCs. Both factors are upstream in the hierarchy of the transcription regulatory network and are partners in regulating several ESC-specific genes. In ESCs, Sox2 is transcriptionally regulated by an enhancer containing a composite sox-oct element that Oct4 and Sox2 bind in a combinatorial interaction. It has previously been shown that Pou5f1, the Oct4 gene, contains a distal enhancer imparting specific expression in both ESCs and preimplantation embryos. Here, we identify a composite sox-oct element within this enhancer and show that it is involved in Pou5f1 transcriptional activity in ESCs. In vitro experiments with ESC nuclear extracts demonstrate that Oct4 and Sox2 interact specifically with this regulatory element. More importantly, by chromatin immunoprecipitation assay, we establish that both Oct4 and Sox2 bind directly to the composite sox-oct elements in both Pou5f1 and Sox2 in living mouse and human ESCs. Specific knockdown of either Oct4 or Sox2 by RNA interference leads to the reduction of both genes' enhancer activities and endogenous expression levels in addition to ESC differentiation. Our data uncover a positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells.

Journal ArticleDOI
25 Jul 2005-Polymer
TL;DR: In this article, the effects of solutions properties and processing conditions on the morphology of electrospun PLLA fibers were investigated. And the results showed that polymer concentration, its molecular weight, electrical conductivity of solvents were dominant parameters to control the morphology.

Journal ArticleDOI
TL;DR: The results obtained indicate that entropy estimators can distinguish normal and epileptic EEG data with more than 95% confidence (using t-test), and the classification ability of the entropy measures is tested using ANFIS classifier.

Journal ArticleDOI
TL;DR: In this article, support vector machines (SVM) were used to forecast building energy consumption in the tropical region, and the performance of SVM with respect to two parameters, C and ǫ, was explored using stepwise searching method based on radial-basis function (RBF) kernel.

Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art of those nanocomposites focusing on their impact and recent trends in the field of bone grafting is presented.

Journal ArticleDOI
TL;DR: A review on the latest research advancement made in the use of polymer nanofibers for applications such as tissue engineering, controlled drug release, wound dressings, medical implants, nanocomposites for dental restoration, molecular separation, biosensors, and preservation of bioactive agents is presented.
Abstract: Research in polymer nanofibers has undergone significant progress in the last one decade. One of the main driving forces for this progress is the increasing use of these polymer nanofibers for biomedical and biotechnological applications. This article presents a review on the latest research advancement made in the use of polymer nanofibers for applications such as tissue engineering, controlled drug release, wound dressings, medical implants, nanocomposites for dental restoration, molecular separation, biosensors, and preservation of bioactive agents.