scispace - formally typeset
Search or ask a question
Institution

Naval Postgraduate School

EducationMonterey, California, United States
About: Naval Postgraduate School is a education organization based out in Monterey, California, United States. It is known for research contribution in the topics: Tropical cyclone & Nonlinear system. The organization has 5246 authors who have published 11614 publications receiving 298300 citations. The organization is also known as: NPS & U.S. Naval Postgraduate School.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a fiber-optic interferometric sensor was developed which consists of a seismic mass of 520 gm supported by two rubber mandrels, each wound with a single layer of single-mode optical fiber 6.5 m long.
Abstract: A fiber-optic interferometric sensor has been developed which consists of a seismic mass of 520 gm supported by two rubber mandrels, each wound with a single layer of single-mode optical fiber 6.5 m long. One end of each fiber is cleaved to enhance reflection. The other ends are interconnected via a fiber-to-fiber 3-dB coupler, forming a Michelson interferometer. When the case of the sensor is displaced, the fiber around one mandrel extends in length while the other contracts. The resulting "push-pull" mechanical operation of the sensor allows both legs of the interferometer to be active, providing good common mode rejection of spurious effects, as a reference leg is not required. This, together with the fact that the light traverses each leg of a Michelson interferometer twice due to reflection, provides the sensor with four times the sensitivity of a conventionally constructed interferometric sensor. Sensitivities of 8500 rad of optical phase shift per micrometer of case displacement have been measured above the mass-spring resonance, where the sensor operates as a seismometer. Below resonance the sensor operates as an accelerometer with a measured sensitivity of 10 500 rad/g, the highest reported to date. Including both thermodynamic and demodulator noise sources ( \approx 10 \mu rad/ \sqrt{Hz} ), below resonance the sensor has a detection threshold of 1 ng/ \sqrt{Hz} , a 20- dB improvement over the best existing conventional low noise vibration sensors.

93 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: In this work, mobile devices successfully retrieve or process data, in the most energy-efficient way, as long as k out of n remote servers are accessible, an approach the authors call k-out-of-n computing.
Abstract: Despite the advances in hardware for hand-held mobile devices, resource-intensive applications (e.g., video and image storage and processing or map-reduce type) still remain off bounds since they require large computation and storage capabilities. Recent research has attempted to address these issues by employing remote servers, such as clouds and peer mobile devices. For mobile devices deployed in dynamic networks (i.e., with frequent topology changes because of node failure/unavailability and mobility as in a mobile cloud), however, challenges of reliability and energy efficiency remain largely unaddressed. To the best of our knowledge, we are the first to address these challenges in an integrated manner for both data storage and processing in mobile cloud, an approach we call k-out-of-n computing . In our solution, mobile devices successfully retrieve or process data, in the most energy-efficient way, as long as k out of n remote servers are accessible. Through a real system implementation we prove the feasibility of our approach. Extensive simulations demonstrate the fault tolerance and energy efficiency performance of our framework in larger scale networks.

93 citations

Journal ArticleDOI
TL;DR: This paper describes methods, both old and new, for the statistical analysis of non-stationary univariate stochastic point processes and sequences of positive random variables in computer systems.
Abstract: Central problems in the performance evaluation of computer systems are the description of the behavior of the system and characterization of the workload. One approach to these problems comprises the interactive combination of data-analytic procedures with probability modeling. This paper describes methods, both old and new, for the statistical analysis of non-stationary univariate stochastic point processes and sequences of positive random variables. Such processes arefr equently encountered in computer systems. As an illustration of the methodology an analysis is given of the stochastic point process of transactions initiated in a running data base system. On theb asis of the statistical analysis, a non-homogeneous Poissonp rocess model for the transaction initiation process is postulated for periods of high system activity and found to be an adequate characterization of the data. For periods of lower system activity, the transaction initiation process has a complex structure, with more clustering evident. Overall models of this type have application to the validation of proposed data base subsystem models.

93 citations

Journal ArticleDOI
TL;DR: Aircraft-based measurements of aerosol composition, either bulk or single-particle, and both subsaturated and supersaturated hygroscopicity were made in the Los Angeles Basin and its outflows during May 2010 during the CalNex field study as discussed by the authors.
Abstract: Aircraft-based measurements of aerosol composition, either bulk or single-particle, and both subsaturated and supersaturated hygroscopicity were made in the Los Angeles Basin and its outflows during May 2010 during the CalNex field study. Aerosol composition evolves from source-rich areas in the western Basin to downwind sites in the eastern Basin, evidenced by transition from an external to internal mixture, as well as enhancements in organic O : C ratio, the amount of organics and nitrate internally mixed on almost all particle types, and coating thickness on refractory black carbon (rBC). Transport into hot, dilute outflow regions leads to significant volatilization of semivolatile material, resulting in a unimodal aerosol comprising primarily oxygenated, low-volatility, water-soluble organics and sulfate. The fraction of particles with rBC or soot cores is between 27 and 51% based on data from a Single Particle Soot Photometer (SP2) and Aerosol Time of Flight Mass Spectrometer (ATOFMS). Secondary organics appear to inhibit subsaturated water uptake in aged particles, while CCN activity is enhanced with photochemical age. A biomass-burning event resulted in suppression of subsaturated hygroscopicity but enhancement in CCN activity, suggesting that BB particles may be nonhygroscopic at subsaturated RH but are important sources of CCN. Aerosol aging and biomass burning can lead to discrepancies between subsaturated and supersaturated hygroscopicity that may be related to mixing state. In the cases of biomass burning aerosol and aged particles coated with secondary material, more than a single parameter representation of subsaturated hygroscopicity and CCN activity is needed.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the rotation of the elliptical eye in the context of barotropic dynamics at three levels were explored: linear waves on a Rankin vortex, nonlinear Kirchhoff vortex, and with a nonlinear spectral model.
Abstract: An elliptical eye that rotated cyclonically with a period of approximately 144 minutes in Typhoon Herb 1996 was documented. The elliptical region had a semimajor axis of 30 km and a semiminor axis of 20 km. Two complete periods of approximately 144 min were observed in the Doppler radar data. The rotation of the elliptical eye in the context of barotropic dynamics at three levels were explored: linear waves on a Rankin vortex, a nonlinear Kirchhoff vortex, and with a nonlinear spectral model. The linear wave theory involves the existence of both the high (potential) vorticity gradient near the eye edge and the cyclonic mean tangential flow in the typhoon. The propagation of (potential) vorticity waves in the cyclonic mean flow makes the elliptical eye rotate cyclonically. The rotation period is longer than the period of a parcel trajectory moving in the cyclonic mean flow around the circumference, because the vorticity wave propagates upwind. The nonlinear theory stems from the rotation of Kirchhoff’s vortex. Estimates of the eye rotation period from both linear and nonlinear theories agree with observations of the eye rotation period when the observed maximum wind from Herb is used. Nonlinear numerical computations suggest the importance of the interaction of neutral vorticity waves, which determine the shape and the rotation period of the eye. The calculations also support the rotation of the eye in approximately 144 min in the presence of axisymmetrization, vorticity redistribution, wave breaking, and vortex merging processes.

93 citations


Authors

Showing all 5313 results

NameH-indexPapersCitations
Mingwei Chen10853651351
O. C. Zienkiewicz10745571204
Richard P. Bagozzi104347103667
Denise M. Rousseau8421850176
John Walsh8175625364
Ming C. Lin7637023466
Steven J. Ghan7520725650
Hui Zhang7520027206
Clare E. Collins7156021443
Christopher W. Fairall7129319756
Michael T. Montgomery6825814231
Tim Li6738316370
Thomas M. Antonsen6588817583
Nadia Magnenat-Thalmann6552114850
Johnny C. L. Chan6126114886
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of Maryland, College Park
155.9K papers, 7.2M citations

88% related

Arizona State University
109.6K papers, 4.4M citations

87% related

University of Colorado Boulder
115.1K papers, 5.3M citations

86% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202331
2022151
2021321
2020382
2019352
2018362