scispace - formally typeset
Search or ask a question
Institution

Naval Surface Warfare Center

FacilityWashington D.C., District of Columbia, United States
About: Naval Surface Warfare Center is a facility organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Sonar & Radar. The organization has 2855 authors who have published 3697 publications receiving 83518 citations. The organization is also known as: NSWC.


Papers
More filters
Journal ArticleDOI
TL;DR: The drag data are used to estimate the effect of a transmitter on the swimming energetics of an adult green turtle, and design guidelines are included to minimize the adverse forces and moments caused by the transmitter.
Abstract: Wind tunnel tests were performed to measure the effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). A full-scale turtle model was constructed from an 11.5 kg specimen with a 48 cm carapace length, and a transmitter model was constructed from a Telonics ST-6. The turtle model was tested in a wind tunnel with and without the transmitter, which was mounted on the forward, topmost part of the carapace. Drag, lift and pitch moment were measured for several speeds and flow angles, and the data were scaled for application to the marine environment. At small flow angles representative of straight-line swimming, the transmitter increased drag by 27-30 %, reduced lift by less than 10 % and increased the pitch moment by 11-42 %. On the basis of the drag data at zero angle of attack, it is estimated that the backpack will reduce swimming speed by 11 %, assuming that the turtle produces the same thrust with the unit attached. The drag data are also used to estimate the effect of a transmitter on the swimming energetics of an adult green turtle. Design guidelines are included to minimize the adverse forces and moments caused by the transmitter.

83 citations

Journal ArticleDOI
TL;DR: Isosorbide-methacrylate (IM) as discussed by the authors is a low viscosity (157 cP) cross-linking resin that free radically reacts to form a thermoset polymer with extent of cure at 85%.
Abstract: In recent years, the bio-refining industry has developed a number of cyclic molecules with unique attributes derived from renewable carbohydrate feedstocks. Isosorbide is one such compound that has a distinctive fused bicyclic ring system that provides a scaffold for the development of novel bio-based resin systems. We synthesized isosorbide-methacrylate (IM) by the direct esterification of isosorbide using highly reactive species such as methacryloyl chloride or methacrylic anhydride and a base catalyst. IM is a low viscosity (157 cP) cross-linking resin that free radically reacts to form a thermoset polymer with extent of cure at 85%. The resulting polymer has a Tg greater than 240 °C and main degradation temperature of ∼400 °C. Mechanical test results showed that IM had a modulus of ∼4 GPa and strength of 85 MPa. These thermal and mechanical properties show that IM has a significantly higher temperature operating window than any known vinyl ester resin and has similar performance to expensive high temperature epoxy resins. As such, this material has good potential for use in composite applications where a moderate to high temperature free radical cured polymer matrix is needed.

83 citations

Journal ArticleDOI
TL;DR: Fay et al. as discussed by the authors conducted a survey in enclosed recirculating raceways, fiberglass and concrete culture tanks, and in outdoor open ponds to understand the effect of environmental waterborne sound on cultured fish.

83 citations

Journal ArticleDOI
TL;DR: The concepts of chaos and its control are reviewed from an experimental as well as a theoretical viewpoint in this article, and examples are given of the control of chaos in ad-hoc set of experimental systems.

83 citations

Journal ArticleDOI
TL;DR: A significant advantage of the proposed method is that it requires no restriction on the number of agents or agents’ neighbors under attacks on sensors and/or actuators, and it recovers even compromised agents under attack on actuators.
Abstract: Resilient and robust distributed control protocols for multiagent systems under attacks on sensors and actuators are designed. A distributed ${H}_{{\infty }}$ control protocol is designed to attenuate the disturbance or attack effects. However, the ${H}_{{\infty }}$ controller is too conservative in the presence of attacks. Therefore, it is augmented with a distributed adaptive compensator to mitigate the adverse effects of attacks. The proposed controller can make the synchronization error arbitrarily small in the presence of faulty attacks, and satisfy global ${L}_{{2}}$ -gain performance in the presence of malicious attacks or disturbances. A significant advantage of the proposed method is that it requires no restriction on the number of agents or agents’ neighbors under attacks on sensors and/or actuators, and it recovers even compromised agents under attacks on actuators. Simulation examples verify the effectiveness of the proposed method.

82 citations


Authors

Showing all 2860 results

NameH-indexPapersCitations
James A. Yorke10144544101
Edward Ott10166944649
Sokrates T. Pantelides9480637427
J. M. D. Coey8174836364
Celso Grebogi7648822450
David N. Seidman7459523715
Mingzhou Ding6925617098
C. L. Cocke513128185
Hairong Qi503279909
Kevin J. Hemker4923110236
William L. Ditto431937991
Carey E. Priebe434048499
Clifford George412355110
Judith L. Flippen-Anderson402056110
Mortimer J. Kamlet3910812071
Network Information
Related Institutions (5)
United States Naval Research Laboratory
45.4K papers, 1.5M citations

83% related

Sandia National Laboratories
46.7K papers, 1.4M citations

82% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

80% related

Rensselaer Polytechnic Institute
39.9K papers, 1.4M citations

80% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
20227
202172
202071
201982
201884