scispace - formally typeset
Search or ask a question
Institution

New South Wales Department of Primary Industries

GovernmentOrange, New South Wales, Australia
About: New South Wales Department of Primary Industries is a government organization based out in Orange, New South Wales, Australia. It is known for research contribution in the topics: Population & Soil carbon. The organization has 1221 authors who have published 2412 publications receiving 55788 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reviews and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing.
Abstract: Biological dinitrogen (N2) fixation is a natural process of significant importance in world agriculture. The demand for accurate determinations of global inputs of biologically-fixed nitrogen (N) is strong and will continue to be fuelled by the need to understand and effectively manage the global N cycle. In this paper we review and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing. Our methodology was to combine data on the areas and yields of legumes and cereals from the Food and Agriculture Organization (FAO) database on world agricultural production (FAOSTAT) with published and unpublished data on N2 fixation. As the FAO lists grain legumes only, and not forage, fodder and green manure legumes, other literature was accessed to obtain approximate estimates in these cases. Below-ground plant N was factored into the estimations. The most important N2-fixing agents in agricultural systems are the symbiotic associations between crop and forage/fodder legumes and rhizobia. Annual inputs of fixed N are calculated to be 2.95 Tg for the pulses and 18.5 Tg for the oilseed legumes. Soybean (Glycine max) is the dominant crop legume, representing 50% of the global crop legume area and 68% of global production. We calculate soybean to fix 16.4 Tg N annually, representing 77% of the N fixed by the crop legumes. Annual N2 fixation by soybean in the U.S., Brazil and Argentina is calculated at 5.7, 4.6 and 3.4 Tg, respectively. Accurately estimating global N2 fixation for the symbioses of the forage and fodder legumes is challenging because statistics on the areas and productivity of these legumes are almost impossible to obtain. The uncertainty increases as we move to the other agricultural-production systems—rice (Oryza sativa), sugar cane (Saccharum spp.), cereal and oilseed (non-legume) crop lands and extensive, grazed savannas. Nonetheless, the estimates of annual N2 fixation inputs are 12–25 Tg (pasture and fodder legumes), 5 Tg (rice), 0.5 Tg (sugar cane), <4 Tg (non-legume crop lands) and <14 Tg (extensive savannas). Aggregating these individual estimates provides an overall estimate of 50–70 Tg N fixed biologically in agricultural systems. The uncertainty of this range would be reduced with the publication of more accurate statistics on areas and productivity of forage and fodder legumes and the publication of many more estimates of N2 fixation, particularly in the cereal, oilseed and non-legume crop lands and extensive tropical savannas used for grazing.

1,355 citations

Journal ArticleDOI
TL;DR: In this paper, a review of published papers and elaboration of software data concerning greenhouse gas and energy balances of bioenergy, other renewable and conventional fossil systems, discusses key issues in bioenergy system LCA.
Abstract: With increasing use of biomass for energy, questions arise about the validity of bioenergy as a means to reduce greenhouse gas emissions and dependence on fossil fuels. Life Cycle Assessment (LCA) is a methodology able to reveal these environmental and energy performances, but results may differ even for apparently similar bioenergy systems. Differences are due to several reasons: type and management of raw materials, conversion technologies, end-use technologies, system boundaries and reference energy system with which the bioenergy chain is compared. Based on review of published papers and elaboration of software data concerning greenhouse gas and energy balances of bioenergy, other renewable and conventional fossil systems, this paper discusses key issues in bioenergy system LCA. These issues have a strong influence on the final results but are often overlooked or mishandled in most of the studies available in literature. The article addresses the following aspects: recognition of the biomass carbon cycle, including carbon stock changes in biomass and soil over time; inclusion of nitrous oxide and methane emissions from agricultural activities; selection of the appropriate fossil reference system; homogeneity of the input parameters in Life Cycle Inventories; influence of the allocation procedure when multiple products are involved; future trends in bioenergy (i.e. second-generation biofuels and biorefineries). Because many key issues are site-specific, and many factors affect the outcome, it is not possible to give exact values for the amount of greenhouse gas emissions and fossil energy consumption saved by a certain bioenergy product, because too many uncertainties are involved. For these reasons, the results are here provided as a means of wide ranges. Despite this wide range of results, it has been possible to draw some important conclusions and devise recommendations concerning the existing bioenergy systems, and some emerging implications about the future deployment and trends of bioenergy products are pointed out.

887 citations

Journal ArticleDOI
TL;DR: In this paper, a meta-analysis using published literature from 2007 to 2013 showed that biochar reduced soil N2O emissions by 54% in laboratory and field studies and that the biochar feedstock, pyrolysis conditions and C/N ratio were key factors influencing emissions.

754 citations

Journal ArticleDOI
TL;DR: It is argued that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas.
Abstract: Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.

721 citations

Journal ArticleDOI
TL;DR: Issues relating to feed intake are the key performance criteria in palatability assessments, and it is important that such experiments maintain sufficient stringency to allow some self-discrimination of the test feeds by the fish.
Abstract: The evaluation of feed ingredients is crucial to nutritional research and feed development for aquaculture species. In evaluating ingredients for use in aquaculture feeds, there are several important knowledge components that should be understood to enable the judicious use of a particular ingredient in feed formulation. This includes information on (1) ingredient digestibilities, (2) ingredient palatability and (3) nutrient utilization and interference. Diet design, feeding strategy, faecal collection method and method of calculation all have important implications on the determination of the digestible value of nutrients from any ingredient. There are several ways in which palatability of ingredients can be assessed, usually based on variable inclusion levels of the ingredient in question in a reference diet and feeding of those diets under an apparent satietal or selfregulating feeding regimes. However, the design of the diets, the parameters of assessment and the feeding regime can all be subject to variation depending on subtleties of the experimental design. Clearly, issues relating to feed intake are the key performance criteria in palatability assessments, and it is important that such experiments maintain sufficient stringency to allow some self-discrimination of the test feeds by the fish. The ability of fish to use nutrients from the test ingredient, or defining factors that interfere with that process, is perhaps the most complex and variable part of the ingredient evaluation process. It is crucial to discriminate effects on feed intake from effects on utilization of nutrients from ingredients (for growth and other metabolic processes). To allow an increased focus on nutrient utilization by the animals, there are several experimental strategies that can be adopted, which are based on variations in diet design and feeding regime used. Other issues such as ingredient functionality, influence on immune status and effects on organoleptic qualities are also important consideration in determining the value of ingredients in aquaculture feed formulations. A key aspect to note is the need to design all experiments with sufficient experimental capacity to detect significant effects.

695 citations


Authors

Showing all 1259 results

NameH-indexPapersCitations
Bin Wang126222674364
David A. Wheeler102276102005
Richard Whittington7846827237
Matthew D. Taylor5848415024
Qiao-Xin Li5814910805
Hamish McCallum5320311274
David Jordan503299044
David L. Hopkins493929270
Annette Cowie4918011929
Steven P. Djordjevic472096871
Geoff M. Gurr4619511312
Brian R. Cullis4516412284
Xinhua He431885743
Robyn D. Warner421986223
David F. Herridge411137753
Network Information
Related Institutions (5)
James Cook University
27.7K papers, 1M citations

85% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

83% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

83% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

83% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
2022112
2021333
2020269
2019281
2018204