scispace - formally typeset
Search or ask a question
Institution

New York University

EducationNew York, New York, United States
About: New York University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 72380 authors who have published 165545 publications receiving 8334030 citations. The organization is also known as: NYU & University of the City of New York.


Papers
More filters
Journal ArticleDOI
30 Aug 2012-Nature
TL;DR: A model of adiposity is generated by giving subtherapeutic antibiotic therapy to young mice and changes in the composition and capabilities of the gut microbiome are evaluated, demonstrating the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.
Abstract: Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.

1,353 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Journal ArticleDOI
TL;DR: The extent and consequences of oral diseases, their social and commercial determinants, and their ongoing neglect in global health policy are described to highlight the urgent need to address oral diseases among other NCDs as a global health priority.

1,349 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated a neglected form of extrarole behavior called taking charge and sought to understand factors that motivate employees to engage in this activity and found that taking charge is disc...
Abstract: In this study, we investigated a neglected form of extrarole behavior called taking charge and sought to understand factors that motivate employees to engage in this activity. Taking charge is disc...

1,348 citations

Journal ArticleDOI
TL;DR: An overarching organization of large-scale connectivity that situates the default-mode network at the opposite end of a spectrum from primary sensory and motor regions is described, suggesting that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.
Abstract: Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.

1,346 citations


Authors

Showing all 73237 results

NameH-indexPapersCitations
Rob Knight2011061253207
Virginia M.-Y. Lee194993148820
Frank E. Speizer193636135891
Stephen V. Faraone1881427140298
Eric R. Kandel184603113560
Andrei Shleifer171514271880
Eliezer Masliah170982127818
Roderick T. Bronson169679107702
Timothy A. Springer167669122421
Alvaro Pascual-Leone16596998251
Nora D. Volkow165958107463
Dennis R. Burton16468390959
Charles N. Serhan15872884810
Giacomo Bruno1581687124368
Tomas Hökfelt158103395979
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

98% related

Yale University
220.6K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

University of Washington
305.5K papers, 17.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023245
20221,205
20218,761
20209,108
20198,417
20187,680