scispace - formally typeset
Search or ask a question
Institution

New York University

EducationNew York, New York, United States
About: New York University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 72380 authors who have published 165545 publications receiving 8334030 citations. The organization is also known as: NYU & University of the City of New York.


Papers
More filters
Proceedings ArticleDOI
03 Nov 2014
TL;DR: A taxonomy of urban sounds and a new dataset, UrbanSound, containing 27 hours of audio with 18.5 hours of annotated sound event occurrences across 10 sound classes are presented.
Abstract: Automatic urban sound classification is a growing area of research with applications in multimedia retrieval and urban informatics. In this paper we identify two main barriers to research in this area - the lack of a common taxonomy and the scarceness of large, real-world, annotated data. To address these issues we present a taxonomy of urban sounds and a new dataset, UrbanSound, containing 27 hours of audio with 18.5 hours of annotated sound event occurrences across 10 sound classes. The challenges presented by the new dataset are studied through a series of experiments using a baseline classification system.

954 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: This work demonstrates a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp 3d, sp4d2 and sp3d3.
Abstract: The ability to design and assemble three-dimensional structures from colloidal particles is limited by the absence of specific directional bonds. As a result, complex or low-coordination structures, common in atomic and molecular systems, are rare in the colloidal domain. Here we demonstrate a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp3d, sp3d2 and sp3d3. Functionalized with DNA with single-stranded sticky ends, patches on different particles can form highly directional bonds through programmable, specific and reversible DNA hybridization. These features allow the particles to self-assemble into ‘colloidal molecules’ with triangular, tetrahedral and other bonding symmetries, and should also give access to a rich variety of new microstructured colloidal materials. A general method of creating colloidal particles that can self-assemble into ‘colloidal molecules’ is described: surface patches with well-defined symmetries are functionalized using DNA with single-stranded sticky ends and imitate hybridized atomic orbitals to form highly directional bonds. Chemists routinely use atoms that can form directional bonds to assemble complex and useful molecular structures. But larger colloidal particles have proved less conducive to rational assembly because they lack specific directional bonds. David Pine and colleagues now report a way around this problem that could lead to the creation of a rich variety of new micro-structured colloidal materials with technologically useful properties. Using microsphere clusters as intermediates, they create colloidal particles with chemically distinct and precisely located 'sticky patches' on the surface — up to 7 per particle — that enable specific and highly directional bonding. Using this system, they assemble 'colloidal molecules' exhibiting a wide range of bonding symmetries.

954 citations

Journal ArticleDOI
TL;DR: This paper study the impact of customer role performance on satisfaction, identifying the elements of style and substance that buyers or sellers use to judge relational performance, and developing measures of relational quality and strength.

954 citations

Journal ArticleDOI
TL;DR: The crystal structure of the phosphorylated, activated form of the insulin receptor tyrosine kinase in complex with a peptide substrate and an ATP analog has been determined and provides insights into tyrosin kinase substrate specificity and the mechanism of phosphotransfer.
Abstract: The crystal structure of the phosphorylated, activated form of the insulin receptor tyrosine kinase in complex with a peptide substrate and an ATP analog has been determined at 1.9 A resolution. The activation loop (A-loop) of the kinase undergoes a major conformational change upon autophosphorylation of Tyr1158, Tyr1162 and Tyr1163 within the loop, resulting in unrestricted access of ATP and protein substrates to the kinase active site. Phosphorylated Tyr1163 (pTyr1163) is the key phosphotyrosine in stabilizing the conformation of the tris-phosphorylated A-loop, whereas pTyr1158 is completely solvent-exposed, suggesting an availability for interaction with downstream signaling proteins. The YMXM-containing peptide substrate binds as a short anti-parallel beta-strand to the C-terminal end of the A-loop, with the methionine side chains occupying two hydrophobic pockets on the C-terminal lobe of the kinase. The structure thus reveals the molecular basis for insulin receptor activation via autophosphorylation, and provides insights into tyrosine kinase substrate specificity and the mechanism of phosphotransfer.

954 citations

Journal ArticleDOI
TL;DR: It is suggested that app developers need to better address consumer concerns, such as cost and high data entry burden, and that clinical trials are necessary to test the efficacy of health apps to broaden their appeal and adoption.
Abstract: Background: Mobile phone health apps may now seem to be ubiquitous, yet much remains unknown with regard to their usage. Information is limited with regard to important metrics, including the percentage of the population that uses health apps, reasons for adoption/nonadoption, and reasons for noncontinuance of use. Objective: The purpose of this study was to examine health app use among mobile phone owners in the United States. Methods: We conducted a cross-sectional survey of 1604 mobile phone users throughout the United States. The 36-item survey assessed sociodemographic characteristics, history of and reasons for health app use/nonuse, perceived effectiveness of health apps, reasons for stopping use, and general health status. Results: A little over half (934/1604, 58.23%) of mobile phone users had downloaded a health-related mobile app. Fitness and nutrition were the most common categories of health apps used, with most respondents using them at least daily. Common reasons for not having downloaded apps were lack of interest, cost, and concern about apps collecting their data. Individuals more likely to use health apps tended to be younger, have higher incomes, be more educated, be Latino/Hispanic, and have a body mass index (BMI) in the obese range (all P <.05). Cost was a significant concern among respondents, with a large proportion indicating that they would not pay anything for a health app. Interestingly, among those who had downloaded health apps, trust in their accuracy and data safety was quite high, and most felt that the apps had improved their health. About half of the respondents (427/934, 45.7%) had stopped using some health apps, primarily due to high data entry burden, loss of interest, and hidden costs. Conclusions: These findings suggest that while many individuals use health apps, a substantial proportion of the population does not, and that even among those who use health apps, many stop using them. These data suggest that app developers need to better address consumer concerns, such as cost and high data entry burden, and that clinical trials are necessary to test the efficacy of health apps to broaden their appeal and adoption. [JMIR Mhealth Uhealth 2015;3(4):e101]

954 citations


Authors

Showing all 73237 results

NameH-indexPapersCitations
Rob Knight2011061253207
Virginia M.-Y. Lee194993148820
Frank E. Speizer193636135891
Stephen V. Faraone1881427140298
Eric R. Kandel184603113560
Andrei Shleifer171514271880
Eliezer Masliah170982127818
Roderick T. Bronson169679107702
Timothy A. Springer167669122421
Alvaro Pascual-Leone16596998251
Nora D. Volkow165958107463
Dennis R. Burton16468390959
Charles N. Serhan15872884810
Giacomo Bruno1581687124368
Tomas Hökfelt158103395979
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

98% related

Yale University
220.6K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

University of Washington
305.5K papers, 17.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023245
20221,205
20218,761
20209,108
20198,417
20187,680