scispace - formally typeset
Search or ask a question
Institution

New York University

EducationNew York, New York, United States
About: New York University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 72380 authors who have published 165545 publications receiving 8334030 citations. The organization is also known as: NYU & University of the City of New York.


Papers
More filters
Proceedings ArticleDOI
27 Jun 2004
TL;DR: A real-time version of the system was implemented that can detect and classify objects in natural scenes at around 10 frames per second and proved impractical, while convolutional nets yielded 16/7% error.
Abstract: We assess the applicability of several popular learning methods for the problem of recognizing generic visual categories with invariance to pose, lighting, and surrounding clutter. A large dataset comprising stereo image pairs of 50 uniform-colored toys under 36 azimuths, 9 elevations, and 6 lighting conditions was collected (for a total of 194,400 individual images). The objects were 10 instances of 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. Five instances of each category were used for training, and the other five for testing. Low-resolution grayscale images of the objects with various amounts of variability and surrounding clutter were used for training and testing. Nearest neighbor methods, support vector machines, and convolutional networks, operating on raw pixels or on PCA-derived features were tested. Test error rates for unseen object instances placed on uniform backgrounds were around 13% for SVM and 7% for convolutional nets. On a segmentation/recognition task with highly cluttered images, SVM proved impractical, while convolutional nets yielded 16/7% error. A real-time version of the system was implemented that can detect and classify objects in natural scenes at around 10 frames per second.

1,509 citations

Journal ArticleDOI
TL;DR: In this paper, bipolar co-ordinates are employed to obtain exact solutions of the equations of slow viscous flow for the steady motion of a solid sphere towards or away from a plane surface of infinite extent.

1,507 citations

Journal ArticleDOI
TL;DR: It is shown that the F-box protein SKP2 specifically recognizes p27 in a phosphorylation-dependent manner that is characteristic of an F- box-protein–substrate interaction and is subject to dual control by the accumulation of bothSKP2 and cyclins following mitogenic stimulation.
Abstract: Degradation of the mammalian cyclin-dependent kinase (CDK) inhibitor p27 is required for the cellular transition from quiescence to the proliferative state. The ubiquitination and subsequent degradation of p27 depend on its phosphorylation by cyclin-CDK complexes. However, the ubiquitin-protein ligase necessary for p27 ubiquitination has not been identified. Here we show that the F-box protein SKP2 specifically recognizes p27 in a phosphorylation-dependent manner that is characteristic of an F-box-protein-substrate interaction. Furthermore, both in vivo and in vitro, SKP2 is a rate-limiting component of the machinery that ubiquitinates and degrades phosphorylated p27. Thus, p27 degradation is subject to dual control by the accumulation of both SKP2 and cyclins following mitogenic stimulation.

1,506 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations

Journal ArticleDOI
22 Feb 2013-Science
TL;DR: A form of self-organization from nonequilibrium driving forces in a suspension of synthetic photoactivated colloidal particles is demonstrated, which leads to two-dimensional "living crystals," which form, break, explode, and re-form elsewhere.
Abstract: Spontaneous formation of colonies of bacteria or flocks of birds are examples of self-organization in active living matter. Here, we demonstrate a form of self-organization from nonequilibrium driving forces in a suspension of synthetic photoactivated colloidal particles. They lead to two-dimensional "living crystals," which form, break, explode, and re-form elsewhere. The dynamic assembly results from a competition between self-propulsion of particles and an attractive interaction induced respectively by osmotic and phoretic effects and activated by light. We measured a transition from normal to giant-number fluctuations. Our experiments are quantitatively described by simple numerical simulations. We show that the existence of the living crystals is intrinsically related to the out-of-equilibrium collisions of the self-propelled particles.

1,497 citations


Authors

Showing all 73237 results

NameH-indexPapersCitations
Rob Knight2011061253207
Virginia M.-Y. Lee194993148820
Frank E. Speizer193636135891
Stephen V. Faraone1881427140298
Eric R. Kandel184603113560
Andrei Shleifer171514271880
Eliezer Masliah170982127818
Roderick T. Bronson169679107702
Timothy A. Springer167669122421
Alvaro Pascual-Leone16596998251
Nora D. Volkow165958107463
Dennis R. Burton16468390959
Charles N. Serhan15872884810
Giacomo Bruno1581687124368
Tomas Hökfelt158103395979
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

98% related

Yale University
220.6K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

University of Washington
305.5K papers, 17.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023245
20221,205
20218,761
20209,108
20198,417
20187,680