Institution
North Carolina State University
Education•Raleigh, North Carolina, United States•
About: North Carolina State University is a(n) education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topic(s): Population & Thin film. The organization has 44161 authors who have published 101744 publication(s) receiving 3456774 citation(s). The organization is also known as: NCSU & North Carolina State University at Raleigh.
Topics: Population, Thin film, Silicon, Poison control, Gene
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the limit distributions of the estimator of p and of the regression t test are derived under the assumption that p = ± 1, where p is a fixed constant and t is a sequence of independent normal random variables.
Abstract: Let n observations Y 1, Y 2, ···, Y n be generated by the model Y t = pY t−1 + e t , where Y 0 is a fixed constant and {e t } t-1 n is a sequence of independent normal random variables with mean 0 and variance σ2. Properties of the regression estimator of p are obtained under the assumption that p = ±1. Representations for the limit distributions of the estimator of p and of the regression t test are derived. The estimator of p and the regression t test furnish methods of testing the hypothesis that p = 1.
21,509 citations
TL;DR: The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973).
Abstract: This journal frequently contains papers that report values of F-statistics estimated from genetic data collected from several populations. These parameters, FST, FIT, and FIS, were introduced by Wright (1951), and offer a convenient means of summarizing population structure. While there is some disagreement about the interpretation of the quantities, there is considerably more disagreement on the method of evaluating them. Different authors make different assumptions about sample sizes or numbers of populations and handle the difficulties of multiple alleles and unequal sample sizes in different ways. Wright himself, for example, did not consider the effects of finite sample size. The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973). We start with the parameters and construct appropriate estimators for them, rather than beginning the discussion with various data functions. The extension of Cockerham's work to multiple alleles and loci will be made explicit, and the use of jackknife procedures for estimating variances will be advocated. All of this may be regarded as an extension of a recent treatment of estimating the coancestry coefficient to serve as a mea-
16,821 citations
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...
16,171 citations
National Institutes of Health1, University of Chicago2, Duke University3, Harvard University4, University of Oxford5, GlaxoSmithKline6, Johns Hopkins University7, Yale University8, deCODE genetics9, Howard Hughes Medical Institute10, Princeton University11, Washington University in St. Louis12, University of California, Berkeley13, Stanford University14, University of Michigan15, Cornell University16, University of Washington17, University of Queensland18, Vanderbilt University19, North Carolina State University20, QIMR Berghofer Medical Research Institute21
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
7,195 citations
Baylor College of Medicine1, Chinese Academy of Sciences2, Chinese National Human Genome Center3, University of Hong Kong4, The Chinese University of Hong Kong5, Hong Kong University of Science and Technology6, Illumina7, McGill University8, Washington University in St. Louis9, University of California, San Francisco10, Wellcome Trust Sanger Institute11, Beijing Normal University12, Health Sciences University of Hokkaido13, Shinshu University14, University of Tsukuba15, Howard University16, University of Ibadan17, Case Western Reserve University18, University of Utah19, Cold Spring Harbor Laboratory20, Johns Hopkins University21, University of Oxford22, North Carolina State University23, National Institutes of Health24, Massachusetts Institute of Technology25, Chinese Academy of Social Sciences26, Kyoto University27, Nagasaki University28, Wellcome Trust29, Genome Canada30, Foundation for the National Institutes of Health31, University of Maryland, Baltimore32, Vanderbilt University33, Stanford University34, New York University35, University of California, Berkeley36, University of Oklahoma37, University of New Mexico38, Université de Montréal39, University of California, Los Angeles40, University of Michigan41, University of Wisconsin-Madison42, London School of Economics and Political Science43, Genetic Alliance44, GlaxoSmithKline45, University of Washington46, Harvard University47, University of Chicago48, Fred Hutchinson Cancer Research Center49, University of Tokyo50
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Abstract: The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.
5,704 citations
Authors
Showing all 44161 results
Name | H-index | Papers | Citations |
---|---|---|---|
Yi Cui | 220 | 1015 | 199725 |
Jing Wang | 184 | 4046 | 202769 |
Rodney S. Ruoff | 164 | 666 | 194902 |
Carlos Bustamante | 161 | 770 | 106053 |
David W. Johnson | 160 | 2714 | 140778 |
Joseph Wang | 158 | 1282 | 98799 |
David Tilman | 158 | 340 | 149473 |
Jay Hauser | 155 | 2145 | 132683 |
James M. Tour | 143 | 859 | 91364 |
Joseph T. Hupp | 141 | 731 | 82647 |
Bin Liu | 138 | 2181 | 87085 |
Rudolph E. Tanzi | 135 | 638 | 85376 |
Richard C. Boucher | 129 | 490 | 54509 |
David B. Allison | 129 | 836 | 69697 |
Robert W. Heath | 128 | 1049 | 73171 |