scispace - formally typeset
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a(n) education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topic(s): Population & Thin film. The organization has 44161 authors who have published 101744 publication(s) receiving 3456774 citation(s). The organization is also known as: NCSU & North Carolina State University at Raleigh.
Topics: Population, Thin film, Silicon, Poison control, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the limit distributions of the estimator of p and of the regression t test are derived under the assumption that p = ± 1, where p is a fixed constant and t is a sequence of independent normal random variables.
Abstract: Let n observations Y 1, Y 2, ···, Y n be generated by the model Y t = pY t−1 + e t , where Y 0 is a fixed constant and {e t } t-1 n is a sequence of independent normal random variables with mean 0 and variance σ2. Properties of the regression estimator of p are obtained under the assumption that p = ±1. Representations for the limit distributions of the estimator of p and of the regression t test are derived. The estimator of p and the regression t test furnish methods of testing the hypothesis that p = 1.

21,509 citations

Journal ArticleDOI
TL;DR: The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973).
Abstract: This journal frequently contains papers that report values of F-statistics estimated from genetic data collected from several populations. These parameters, FST, FIT, and FIS, were introduced by Wright (1951), and offer a convenient means of summarizing population structure. While there is some disagreement about the interpretation of the quantities, there is considerably more disagreement on the method of evaluating them. Different authors make different assumptions about sample sizes or numbers of populations and handle the difficulties of multiple alleles and unequal sample sizes in different ways. Wright himself, for example, did not consider the effects of finite sample size. The purpose of this discussion is to offer some unity to various estimation formulae and to point out that correlations of genes in structured populations, with which F-statistics are concerned, are expressed very conveniently with a set of parameters treated by Cockerham (1 969, 1973). We start with the parameters and construct appropriate estimators for them, rather than beginning the discussion with various data functions. The extension of Cockerham's work to multiple alleles and loci will be made explicit, and the use of jackknife procedures for estimating variances will be advocated. All of this may be regarded as an extension of a recent treatment of estimating the coancestry coefficient to serve as a mea-

16,821 citations

Journal ArticleDOI
TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

16,171 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,195 citations

Journal ArticleDOI
John W. Belmont1, Paul Hardenbol, Thomas D. Willis, Fuli Yu1, Huanming Yang2, Lan Yang Ch'Ang, Wei Huang3, Bin Liu2, Yan Shen3, Paul K.H. Tam4, Lap-Chee Tsui4, Mary M.Y. Waye5, Jeffrey Tze Fei Wong6, Changqing Zeng2, Qingrun Zhang2, Mark S. Chee7, Luana Galver7, Semyon Kruglyak7, Sarah S. Murray7, Arnold Oliphant7, Alexandre Montpetit8, Fanny Chagnon8, Vincent Ferretti8, Martin Leboeuf8, Michael S. Phillips8, Andrei Verner8, Shenghui Duan9, Denise L. Lind10, Raymond D. Miller9, John P. Rice9, Nancy L. Saccone9, Patricia Taillon-Miller9, Ming Xiao10, Akihiro Sekine, Koki Sorimachi, Yoichi Tanaka, Tatsuhiko Tsunoda, Eiji Yoshino, David R. Bentley11, Sarah E. Hunt11, Don Powell11, Houcan Zhang12, Ichiro Matsuda13, Yoshimitsu Fukushima14, Darryl Macer15, Eiko Suda15, Charles N. Rotimi16, Clement Adebamowo17, Toyin Aniagwu17, Patricia A. Marshall18, Olayemi Matthew17, Chibuzor Nkwodimmah17, Charmaine D.M. Royal16, Mark Leppert19, Missy Dixon19, Fiona Cunningham20, Ardavan Kanani20, Gudmundur A. Thorisson20, Peter E. Chen21, David J. Cutler21, Carl S. Kashuk21, Peter Donnelly22, Jonathan Marchini22, Gilean McVean22, Simon Myers22, Lon R. Cardon22, Andrew P. Morris22, Bruce S. Weir23, James C. Mullikin24, Michael Feolo24, Mark J. Daly25, Renzong Qiu26, Alastair Kent, Georgia M. Dunston16, Kazuto Kato27, Norio Niikawa28, Jessica Watkin29, Richard A. Gibbs1, Erica Sodergren1, George M. Weinstock1, Richard K. Wilson9, Lucinda Fulton9, Jane Rogers11, Bruce W. Birren25, Hua Han2, Hongguang Wang, Martin Godbout30, John C. Wallenburg8, Paul L'Archevêque, Guy Bellemare, Kazuo Todani, Takashi Fujita, Satoshi Tanaka, Arthur L. Holden, Francis S. Collins24, Lisa D. Brooks24, Jean E. McEwen24, Mark S. Guyer24, Elke Jordan31, Jane Peterson24, Jack Spiegel24, Lawrence M. Sung32, Lynn F. Zacharia24, Karen Kennedy29, Michael Dunn29, Richard Seabrook29, Mark Shillito, Barbara Skene29, John Stewart29, David Valle21, Ellen Wright Clayton33, Lynn B. Jorde19, Aravinda Chakravarti21, Mildred K. Cho34, Troy Duster35, Troy Duster36, Morris W. Foster37, Maria Jasperse38, Bartha Maria Knoppers39, Pui-Yan Kwok10, Julio Licinio40, Jeffrey C. Long41, Pilar N. Ossorio42, Vivian Ota Wang33, Charles N. Rotimi16, Patricia Spallone43, Patricia Spallone29, Sharon F. Terry44, Eric S. Lander25, Eric H. Lai45, Deborah A. Nickerson46, Gonçalo R. Abecasis41, David Altshuler47, Michael Boehnke41, Panos Deloukas11, Julie A. Douglas41, Stacey Gabriel25, Richard R. Hudson48, Thomas J. Hudson8, Leonid Kruglyak49, Yusuke Nakamura50, Robert L. Nussbaum24, Stephen F. Schaffner25, Stephen T. Sherry24, Lincoln Stein20, Toshihiro Tanaka 
18 Dec 2003-Nature
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Abstract: The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.

5,704 citations


Authors

Showing all 44161 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022130
20215,257
20205,458
20194,888
20184,521
20174,618