scispace - formally typeset
Search or ask a question

Showing papers by "North Carolina State University published in 1999"


Journal ArticleDOI
03 Sep 1999-Science
TL;DR: A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Niño temperatures, which climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases.
Abstract: Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997—98 is coincident with high El Nino temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations. T he oceans harbor enormous biodiver- sity by terrestrial terms (1), much of which is still poorly described taxo- nomically. Even less well known are the dy- namics of intermittent, ephemeral, threshold phenomena such as disease outbreaks. De- spite decades of intense study of the biolog- ical agents structuring natural communities, the ecological and evolutionary impact of diseases in the ocean remains unknown, even when these diseases affect economically and ecologically important species. The paucity of baseline and epidemiological information on normal disease levels in the ocean chal- lenges our ability to assess the novelty of a recent spate of disease outbreaks and to de- termine the relative importance of increased pathogen transmission versus decreased host resistance in facilitating the outbreaks. Our objectives here are to review the prevalence of diseases of marine taxa to evaluate wheth- er it can be concluded that there has been a recent increase. We also assess the contribut- ing roles of human activity and global cli- mate, and evaluate the role of the oceans as incubators and conveyors of human disease agents. Is There an Increase in Diseases in the Ocean?

1,778 citations


Journal ArticleDOI
TL;DR: This paper revision the terminology, which is unclear and confusing, thereby providing a classification of such control mechanisms, and surveys various forms of control which have been studied by the evolutionary computation community in recent years.
Abstract: The issue of controlling values of various parameters of an evolutionary algorithm is one of the most important and promising areas of research in evolutionary computation: it has a potential of adjusting the algorithm to the problem while solving the problem. In the paper we: 1) revise the terminology, which is unclear and confusing, thereby providing a classification of such control mechanisms, and 2) survey various forms of control which have been studied by the evolutionary computation community in recent years. Our classification covers the major forms of parameter control in evolutionary computation and suggests some directions for further research.

1,742 citations


Journal ArticleDOI
TL;DR: A review of the current state of knowledge of phase separation and phase equilibria in porous materials can be found in this article, where the focus is on fundamental studies of simple fluids and well-characterized materials.
Abstract: We review the current state of knowledge of phase separation and phase equilibria in porous materials. Our emphasis is on fundamental studies of simple fluids (composed of small, neutral molecules) and well-characterized materials. While theoretical and molecular simulation studies are stressed, we also survey experimental investigations that are fundamental in nature. Following a brief survey of the most useful theoretical and simulation methods, we describe the nature of gas‐liquid (capillary condensation), layering, liquid‐liquid and freezing/melting transitions. In each case studies for simple pore geometries, and also more complex ones where available, are discussed. While a reasonably good understanding is available for phase equilibria of pure adsorbates in simple pore geometries, there is a need to extend the models to more complex pore geometries that include effects of chemical and geometrical heterogeneity and connectivity. In addition, with the exception of liquid‐liquid equilibria, little work has been done so far on phase separation for mixtures in porous media.

1,436 citations


Journal ArticleDOI
TL;DR: In this article, a fundamental theory for gas separation properties of polymer membrane materials following distinct tradeoff relations is presented. But the authors do not consider the effect of the size of the gas mixture.
Abstract: Gas separation properties of polymer membrane materials follow distinct tradeoff relations: more permeable polymers are generally less selective and vice versa. Robeson1 identified the best combinations of permeability and selectivity for important binary gas pairs (O2/N2, CO2/CH4, H2/N2, etc.) and represented these permeability/selectivity combinations empirically as αA/B = βA/B , where PA and PB are the permeability coefficients of the more permeable and less permeable gases, respectively, αA/B is selectivity (=PA/PB), and λA/B and βA/B are empirical parameters. This report provides a fundamental theory for this observation. In the theory, λA/B depends only on gas size. βA/B depends on λA/B, gas condensability, and one adjustable parameter.

1,346 citations


Journal ArticleDOI
01 Jul 1999-Genetics
TL;DR: Using the MIM model, a stepwise selection procedure with likelihood ratio test statistic as a criterion is proposed to identify QTL and the best strategy of marker-assisted selection for trait improvement for a specific purpose and requirement can be explored.
Abstract: A new statistical method for mapping quantitative trait loci (QTL), called multiple interval mapping (MIM), is presented. It uses multiple marker intervals simultaneously to fit multiple putative QTL directly in the model for mapping QTL. The MIM model is based on Cockerham's model for interpreting genetic parameters and the method of maximum likelihood for estimating genetic parameters. With the MIM approach, the precision and power of QTL mapping could be improved. Also, epistasis between QTL, genotypic values of individuals, and heritabilities of quantitative traits can be readily estimated and analyzed. Using the MIM model, a stepwise selection procedure with likelihood ratio test statistic as a criterion is proposed to identify QTL. This MIM method was applied to a mapping data set of radiata pine on three traits: brown cone number, tree diameter, and branch quality scores. Based on the MIM result, seven, six, and five QTL were detected for the three traits, respectively. The detected QTL individually contributed from approximately 1 to 27% of the total genetic variation. Significant epistasis between four pairs of QTL in two traits was detected, and the four pairs of QTL contributed approximately 10.38 and 14.14% of the total genetic variation. The asymptotic variances of QTL positions and effects were also provided to construct the confidence intervals. The estimated heritabilities were 0.5606, 0.5226, and 0. 3630 for the three traits, respectively. With the estimated QTL effects and positions, the best strategy of marker-assisted selection for trait improvement for a specific purpose and requirement can be explored. The MIM FORTRAN program is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).

941 citations


Journal ArticleDOI
TL;DR: Experimental reductions in grassland plant richness increase ecosystem vulnerability to invasions by plant species, enhance the spread of plant fungal diseases, and alter the richness and structure of insect communities, suggesting that the loss of basal species may have profound effects on the integrity and functioning of ecosystems.
Abstract: Declining biodiversity represents one of the most dramatic and irreversible aspects of anthropogenic global change, yet the ecological implications of this change are poorly understood. Recent studies have shown that biodiversity loss of basal species, such as autotrophs or plants, affects fundamental ecosystem processes such as nutrient dynamics and autotrophic production. Ecological theory predicts that changes induced by the loss of biodiversity at the base of an ecosystem should impact the entire system. Here we show that experimental reductions in grassland plant richness increase ecosystem vulnerability to invasions by plant species, enhance the spread of plant fungal diseases, and alter the richness and structure of insect communities. These results suggest that the loss of basal species may have profound effects on the integrity and functioning of ecosystems.

838 citations


Journal ArticleDOI
TL;DR: The goal of this review is to summarize recent research addressing geminivirus DNA replication and its integration with transcriptional and cell cycle regulatory processes.
Abstract: Geminiviruses have small, single-stranded DNA genomes that replicate through double-stranded intermediates in the nuclei of infected plant cells. Viral double-stranded DNA also assembles into minichromosomes and is transcribed in infected cells. Geminiviruses encode only a few proteins for their replication and transcription and rely on host enzymes for these processes. However, most plant cells, which have exited the cell cycle and undergone differentiation, do not contain the replicative enzymes necessary for viral DNA synthesis. To overcome this barrier, geminiviruses induce the accumulation of DNA replication machinery in mature plant cells, most likely by modifying cell cycle and transcriptional controls. In animals, several DNA viruses depend on host replication and transcription machinery and can alter their hosts to create an environment that facilitates efficient viral replication. Analysis of these viruses and their proteins has contributed significantly to our understanding of DNA replication, transcription, and cell cycle regulation in mammalian cells. Geminiviruses have the same potential for plant systems. Plants offer many advantages for these types of studies, including ease of transformation, well-defined cell populations and developmental programs, and greater tolerance of cell cycle perturbation and polyploidy. Our knowledge of the molecular and cellular events that mediate geminivirus infection has increased significantly during recent years. The goal of this review is to summarize recent research addressing geminivirus DNA replication and its integration with transcriptional and cell cycle regulatory processes.

837 citations


Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: It is shown that exposing female mouse fetuses to an EEDC at a dose that is within the range typical of the environmental exposure of humans alters the postnatal growth rate and brings on early puberty in these mice.
Abstract: Plastics and pesticides are examples of products that contain oestrogenic endocrine-disrupting chemicals, or EEDCs, which can interfere with mammalian development by mimicking the action of the sex hormone oestradiol1. For instance, the exposure of developing rodents to high doses of EEDCs advances puberty and alters their reproductive function2. Low environmental doses of EEDCs may also affect development in humans3. Effects have become apparent in humans over the past half century that are consistent with those seen in animals after exposure to high doses of EEDCs, such as an increase in genital abnormality in boys4 and earlier sexual maturation in girls5. Here we show that exposing female mouse fetuses to an EEDC at a dose that is within the range typical of the environmental exposure of humans alters the postnatal growth rate and brings on early puberty in these mice.

793 citations


Journal ArticleDOI
TL;DR: It is reported that Cu(II) markedly potentiates the neurotoxicity exhibited by Abeta in cell culture, suggesting that certain redox active metal ions may be important in exacerbating and perhaps facilitating Abeta-mediated oxidative damage in Alzheimer's disease.

750 citations



Journal ArticleDOI
TL;DR: In this article, the authors present an efficient approach to describe the electronic transport properties of extended systems based on the surface Green's function matching formalism and combine the iterative calculation of transfer matrices with the Landauer formula for the coherent conductance.
Abstract: We present an efficient approach to describe the electronic transport properties of extended systems. The method is based on the surface Green's function matching formalism and combines the iterative calculation of transfer matrices with the Landauer formula for the coherent conductance. The scheme is applicable to any general Hamiltonian that can be described within a localized orbital basis. As illustrative examples, we calculate transport properties for various ideal and mechanically deformed carbon nanotubes using realistic orthogonal and nonorthogonal tight-binding models. In particular, we observe that bent carbon nanotubes maintain their basic electrical properties even in the presence of large mechanical deformations.

Journal ArticleDOI
01 Jan 1999-Langmuir
TL;DR: Gelb et al. as mentioned in this paper used the Barrett−Joyner−Halenda (BJH) method to yield pore size distributions, which are tested against exact pore sizes directly measured from the pore structures.
Abstract: We have prepared a series of molecular models of porous glass using a recently developed procedure (Gelb, L. D.; Gubbins, K. E. Langmuir 1998, 14, 2097) that mimics the experimental processes that produce Vycor and controlled-pore glasses. We calculate nitrogen adsorption isotherms in these precisely characterized model glasses using Monte Carlo simulations. These isotherms are analyzed using the Barrett−Joyner−Halenda (BJH) method to yield pore size distributions, which are tested against exact pore size distributions directly measured from the pore structures. The BJH method yields overly sharp distributions that are systematically shifted (by about 1 nm) to lower pore sizes than those from our geometric method.

Journal ArticleDOI
Klaus F. X. Mayer1, C. Schüller1, R. Wambutt, George Murphy2  +230 moreInstitutions (21)
16 Dec 1999-Nature
TL;DR: Analysis of 17.38 megabases of unique sequence, representing about 17% of the Arabidopsis genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements.
Abstract: The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

Proceedings ArticleDOI
21 Sep 1999
TL;DR: This work considers the design of space-time modulation techniques that do not require channel estimates at the transmitter or receiver and derives low-complexity differential receivers, error bounds, and modulator design criteria, which are used to design optimal modulators for two transmit antennas.
Abstract: We consider the design of space-time modulation techniques that do not require channel estimates at the transmitter or receiver. We propose a general approach to differential modulation for multiple transmit antennas based on group codes. This approach can be applied to any number of transmit antennas and any signal constellation. We also derive low-complexity differential receivers, error bounds, and modulator design criteria, which we use to design optimal modulators for two transmit antennas.

Journal ArticleDOI
TL;DR: The data show that the TOSC assay is useful and robust in distinguishing the reactivity of various oxidants and the relative capacities of antioxidants to scavenge these oxidants.

Patent
20 Oct 1999
TL;DR: The use of the trench-based source electrode instead of a larger gate electrode reduces the gate-to-drain capacitance (CGD) of the UMOSFET and improves switching speed by reducing the amount of gate charging and discharging current that is needed during high frequency operation.
Abstract: Integrated power semiconductor devices having improved high frequency switching performance, improved edge termination characteristics and reduced on-state resistance include GD-UMOSFET unit cells with upper trench-based gate electrodes and lower-trench based source electrodes. The use of the trench-based source electrode instead of a larger gate electrode reduces the gate-to-drain capacitance (CGD) of the UMOSFET and improves switching speed by reducing the amount of gate charging and discharging current that is needed during high frequency operation.

Journal ArticleDOI
TL;DR: In this article, the authors present a simple model of nonlinear diffusive shock acceleration (also called first-order Fermi shock acceleration) that determines the shock modification, spectrum, and efficiency of the process in the plane-wave, steady state approximation as a function of an arbitrary injection parameter, η.
Abstract: We present a simple model of nonlinear diffusive shock acceleration (also called first-order Fermi shock acceleration) that determines the shock modification, spectrum, and efficiency of the process in the plane-wave, steady state approximation as a function of an arbitrary injection parameter, η. The model, which uses a three-power-law form for the accelerated particle spectrum and contains only simple algebraic equations, includes the essential elements of the full nonlinear model and has been tested against Monte Carlo and numerical kinetic shock models. We include both adiabatic and Alfven wave heating of the upstream precursor. The simplicity and ease of calculation make this model useful for studying the basic properties of nonlinear shock acceleration, as well as providing results accurate enough for many astrophysical applications. It is shown that the shock properties depend upon the shock speed u0 with respect to a critical value u ηp, which is a function of the injection rate η and maximum accelerated particle momentum pmax. For u0 MA0, or by rtot ≈ 1.5M in the opposite case (MS0 is the sonic Mach number and MA0 is the Alfven Mach number). If u0 > u, the shock, although still strong, becomes almost unmodified and accelerated particle production decreases inversely proportional to u0.

Journal ArticleDOI
TL;DR: The project was a successful model for achieving dietary change among rural African Americans and the largest increases were observed among people 66 years or older and those with education beyond high school.
Abstract: OBJECTIVES: This study assessed the effects of the Black Churches United for Better Health project on increasing fruit and vegetable consumption among rural African American church members in North Carolina. METHODS: Ten counties comprising 50 churches were pair matched and randomly assigned to either intervention or delayed intervention (no program until after the follow-up survey) conditions. A multicomponent intervention was conducted over approximately 20 months. A total of 2519 adults (77.3% response rate) completed both the baseline and 2-year follow-up interviews. RESULTS: The 2 study groups consumed similar amounts of fruits and vegetables at baseline. AT the 2-year follow-up, the intervention group consumed 0.85 (SE = 0.12) servings more than the delayed intervention group (P < .0001). The largest increases were observed among people 66 years or older (1 serving), those with education beyond high school (0.92 servings), those widowed or divorced (0.96 servings), and those attending church frequen...

Journal ArticleDOI
01 Sep 1999-Ecology
TL;DR: This paper quantifies hypotheses by writing mathematical models that embody the interactions and forces that might cause cycles of population cycles, using both long-term population time series and the often-rich observational and experimental data on the ecology of the species in question.
Abstract: Population cycles have long fascinated ecologists. Even in the most-studied populations, however, scientists continue to dispute the relative importance of various potential causes of the cycles. Over the past three decades, theoretical ecologists have cataloged a large number of mechanisms that are capable of generating cycles in population models. At the same time, statisticians have developed new techniques both for characterizing time series and for fitting population models to time-series data. Both disciplines are now sufficiently advanced that great gains in understanding can be made by synthesizing these complementary, and heretofore mostly independent, quantitative approaches. In this paper we demonstrate how to apply this synthesis to the problem of population cycles, using both long-term population time series and the often-rich observational and experimental data on the ecology of the species in question. We quantify hypotheses by writing mathematical models that embody the interactions and forces that might cause cycles. Some hypotheses can be rejected out of hand, as being unable to generate even qualitatively appropriate dynamics. We finish quantifying the remaining hypotheses by estimating parameters, both from independent experiments and from fitting the models to the time-series data using modern statistical techniques. Finally, we compare simulated time series generated by the models to the observed time series, using a variety of statistical descriptors, which we refer to collectively as “probes.” The model most similar to the data, as measured by these probes, is considered to be the most likely candidate to represent the mechanism underlying the population cycles. We illustrate this approach by analyzing one of Nicholson’s blowfly populations, in which we know the “true” governing mechanism. Our analysis, which uses only a subset of the information available about the population, uncovers the correct answer, suggesting that this synthetic approach might be successfully applied to field populations as well.

Journal ArticleDOI
TL;DR: This work synthesizes ideas from multiagent systems, particularly the idea of social context, with ideas from ethics and legal reasoning, specifically that of directed obligations in the Hohfeldian tradition, to capture normative concepts such as obligations, taboos, conventions, and pledges as different kinds of commitments.
Abstract: Social commitments have long been recognized as an important concept for multiagent systems. We propose a rich formulation of social commitments that motivates an architecture for multiagent systems, which we dub spheres of commitment. We identify the key operations on commitments and multiagent systems. We distinguish between explicit and implicit commitments. Multiagent systems, viewed as spheres of commitment (SoComs), provide the context for the different operations on commitments. Armed with the above ideas, we can capture normative concepts such as obligations, taboos, conventions, and pledges as different kinds of commitments. In this manner, we synthesize ideas from multiagent systems, particularly the idea of social context, with ideas from ethics and legal reasoning, specifically that of directed obligations in the Hohfeldian tradition.

Journal ArticleDOI
TL;DR: Looking ahead, it will be vital to the development of this exploding field to correlate important characteristics in probiotics with known genotypes and regulatory controls that are likely to affect functionality and beneficial outcomes, in vivo.

Journal ArticleDOI
TL;DR: In this article, a method for synthesizing hollow nanoscopic polypyrrole and poly(N-methyl pyrrole) capsules is described, which employs gold nanoparticles as templates for polymer nucleation and growth.
Abstract: A method for synthesizing hollow nanoscopic polypyrrole and poly(N-methylpyrrole) capsules is described. The method employs gold nanoparticles as templates for polymer nucleation and growth. Etching the gold leaves a structurally intact hollow polymer capsule with a shell thickness governed by polymerization time (ca. 5 to >100 nm) and a hollow core diameter dictated by the diameter of the template particle (ca. 5−200 nm). Transport rates of gold etchant through the polymer shell to the gold core were found to depend on the oxidation state of the polymer, those rates being a factor of 3 greater for the reduced form of the polymer. We show for the first time that not only is the particle a useful template material but also that it can be employed to deliver guest molecules into the capsule core. For example, ligands attached to the gold surface prior to poly(N-methylpyrrole) formation remained trapped inside the hollow capsule following polymer formation and gold etching.

Journal ArticleDOI
TL;DR: In this article, the authors measured communities of macrophyte aboveground biomass, macro-organic matter (MOM), benthic invertebrates, and ecosystem processes (soil development, organic C, N, and P accumulation) of two constructed and paired natural S. alterniflora (Loisel) marshes in North Carolina during the past 25 years.
Abstract: Wetland creation and restoration are frequently used to replace ecological functions and values lost when natural wetlands are degraded or destroyed. On many sites, restoration of ecological attributes such as secondary production, habitat/species diversity, and wetland soil characteristics do not occur within the first decade, and no long-term studies exist to document the length of time required to achieve complete restoration of wetland dependent functions and values. Characteristics of community structure (macrophyte aboveground biomass, macro-organic matter [MOM], benthic invertebrates) and ecosystem processes (soil development, organic C, N, and P accumulation) of two constructed Spartina alterniflora (Loisel) marshes (established 1971 and 1974) and paired natural S. alterniflora marshes in North Carolina were periodically measured during the past 25 yr. On constructed marshes, the macrophyte community developed quickly, and within 5 to 10 yr, aboveground biomass and MOM were equivalent to or exceed...

Journal ArticleDOI
TL;DR: A new feature-based approach to automated image-to-image registration that combines an invariant-moment shape descriptor with improved chain-code matching to establish correspondences between the potentially matched regions detected from the two images is presented.
Abstract: A new feature-based approach to automated image-to-image registration is presented. The characteristic of this approach is that it combines an invariant-moment shape descriptor with improved chain-code matching to establish correspondences between the potentially matched regions detected from the two images. It is robust in that it overcomes the difficulties of control-point correspondence by matching the images both in the feature space, using the principle of minimum distance classifier (based on the combined criteria), and sequentially in the image space, using the rule of root mean-square error (RMSE). In image segmentation, the performance of the Laplacian of Gaussian operators is improved by introducing a new algorithm called thin and robust zero crossing. After the detected edge points are refined and sorted, regions are defined. Region correspondences are then performed by an image-matching algorithm developed in this research. The centers of gravity are then extracted from the matched regions and are used as control points. Transformation parameters are estimated based on the final matched control-point pairs. The algorithm proposed is automated, robust, and of significant value in an operational context. Experimental results using multitemporal Landsat TM imagery are presented.

Journal ArticleDOI
TL;DR: It is shown by examples that the similarity measures proposed by Chen do not fit well in some cases, and a set of modified measures is proposed that turned out to be more reasonable in more general cases than the previous one.

Journal ArticleDOI
TL;DR: In this paper, a model photosynthetic antenna consisting of four covalently linked zinc tetraarylporphyrins, (PZP)3−PZC, has been joined to a free base porphyrin-fullerene artificial reaction center, P−C60, to form a hexad.
Abstract: A model photosynthetic antenna consisting of four covalently linked zinc tetraarylporphyrins, (PZP)3−PZC, has been joined to a free base porphyrin-fullerene artificial photosynthetic reaction center, P−C60, to form a (PZP)3−PZC−PC60 hexad. As revealed by time-resolved absorption and emission studies, excitation of any peripheral zinc porphyrin moiety (PZP) in 2-methyltetrahydrofuran solution is followed by singlet−singlet energy transfer to the central zinc porphyrin to give (PZP)3−1PZC−P−C60 with a time constant of ∼50 ps. The excitation is passed on to the free base porphyrin in 240 ps to produce (PZP)3−PZC−1P−C60, which decays by electron transfer to the fullerene with a time constant of 3 ps. The (PZP)3−PZC−P•+−C60•- charge-separated state thus formed has a lifetime of 1330 ps, and is generated with a quantum yield of 0.70 based on light absorbed by the zinc porphyrin antenna. The complex thus mimics the basic functions of natural photosynthetic antenna systems and reaction center complexes.

Journal ArticleDOI
TL;DR: Genetic diversity maps provide a framework to understand the taxonomy, population structure, and dynamics of phytobacteria and provide a high-resolution framework to devise sensitive, specific, and rapid methods for pathogen detection, plant disease diagnosis, as well as management of disease risk.
Abstract: ▪ Abstract The advent of molecular biology in general and the polymerase chain reaction in particular have greatly facilitated genomic analyses of microorganisms, provide enhanced capability to characterize and classify strains, and facilitate research to assess the genetic diversity of populations. The diversity of large populations can be assessed in a relatively efficient manner using rep-PCR-, AFLP-, and AP-PCR/RAPD-based genomic fingerprinting methods, especially when combined with computer-assisted pattern analysis. Genetic diversity maps provide a framework to understand the taxonomy, population structure, and dynamics of phytobacteria and provide a high-resolution framework to devise sensitive, specific, and rapid methods for pathogen detection, plant disease diagnosis, as well as management of disease risk. A variety of PCR-based fingerprinting protocols such as rDNA-based PCR, ITS-PCR, ARDRA, T-RFLPs, and tRNA-PCR have been devised, and numerous innovative approaches using specific primers have ...

Journal ArticleDOI
TL;DR: One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating, as well as other areas that require further investigation.
Abstract: Understanding and estimating the structure and parameters associated with the genetic architecture of quantitative traits is a major research focus in quantitative genetics. With the availability of a well-saturated genetic map of molecular markers, it is possible to identify a major part of the structure of the genetic architecture of quantitative traits and to estimate the associated parameters. Multiple interval mapping, which was recently proposed for simultaneously mapping multiple quantitative trait loci (QTL), is well suited to the identification and estimation of the genetic architecture parameters, including the number, genomic positions, effects and interactions of significant QTL and their contribution to the genetic variance. With multiple traits and multiple environments involved in a QTL mapping experiment, pleiotropic effects and QTL by environment interactions can also be estimated. We review the method and discuss issues associated with multiple interval mapping, such as likelihood analysis, model selection, stopping rules and parameter estimation. The potential power and advantages of the method for mapping multiple QTL and estimating the genetic architecture are discussed. We also point out potential problems and difficulties in resolving the details of the genetic architecture as well as other areas that require further investigation. One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating.

Journal ArticleDOI
TL;DR: In this article, a single event model for simulating the hydrology and sediment filtration in buffer strips is developed and field tested by linking three submodels to describe the principal mechanisms found in natural buffers: a Petrov-Galerkin finite element kinematic wave overland flow submodel, a modified Green-Ampt infiltration submodel and the University of Kentucky sediment filter model.

Journal ArticleDOI
TL;DR: In this paper, the solubilities of block copolymers were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether-polyamide segmented block Copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene dioxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as hard polyamide phase.
Abstract: The solubilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n-C4H10 were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether–polyamide segmented block copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as the hard polyamide phase. Sorption isotherms are linear for the least soluble gases (He, H2, N2, O2, and CH4), convex to the pressure axis for more soluble penetrants (CO2, C3H8, and n-C4H10) and slightly concave to the pressure axis for ethane. These polymers exhibit high CO2/N2 and CO2/H2 solubility selectivity. This property appears to derive mainly from high carbon dioxide solubility, which is ascribed to the strong affinity of the polar ether linkages for CO2. As the amount of the polyether phase in the copolymers increases, gas solubility increases. The solubility of all gases is higher in polymers with less polar constituents, PTMEO and PA12, than in polymers with more polar PEO and PA6 units. CO2/N2 and CO2/H2 solubility selectivity, however, are higher in polymers with higher concentrations of polar repeat units. The sorption data are complemented with physical characterization (differential scanning calorimetry, elemental analysis, and wide angle X-ray diffraction) of the various block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2463–2475, 1999