scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.
Topics: Population, Thin film, Silicon, Gene, Poison control


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the fabrication and characterization of fi bers that are ultrastretchable and have metallic electrical conductivity are described, and they are used as stretchable wires for earphones and for a battery charger.
Abstract: The fabrication and characterization of fi bers that are ultrastretchable and have metallic electrical conductivity are described. The fi bers consist of a liquid metal alloy, eutectic gallium indium (EGaIn), injected into the core of stretchable hollow fi bers composed of a triblock copolymer, poly[styreneb -(ethylene- co -butylene)- b -styrene] (SEBS) resin. The hollow fi bers are easy to mass-produce with controlled size using commercially available melt processing methods. The fi bers are similar to conventional metallic wires, but can be stretched orders of magnitude further while retaining electrical conductivity. Mechanical measurements with and without the liquid metal inside the fi bers show the liquid core has a negligible impact on the mechanical properties of the fi bers, which is in contrast to most conductive composite fi bers. The fi bers also maintain the same tactile properties with and without the metal. Electrical measurements show that the fi bers increase resistance as the fi ber elongates and the cross sectional area narrows. Fibers with larger diameters change from a triangular to a more circular cross-section during stretching, which has the appeal of lowering the resistance below that predicted by theory. To demonstrate their utility, the ultrastretchable fi bers are used as stretchable wires for earphones and for a battery charger and perform as well as their conventional parts.

454 citations

Journal ArticleDOI
TL;DR: It is shown that ethylene-triggered inhibition of root growth, one of the classical effects of ethylene in Arabidopsis thaliana seedlings, is mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 and ASA1 genes that encode α- and β-subunits of a rate-limiting enzyme of Trp biosynthesis, anthranilate synthase.
Abstract: The plant hormone ethylene participates in the regulation of a variety of developmental processes and serves as a key mediator of plant responses to biotic and abiotic stress factors. The diversity of ethylene functions is achieved, at least in part, by combinatorial interactions with other hormonal signals. Here, we show that ethylene-triggered inhibition of root growth, one of the classical effects of ethylene in Arabidopsis thaliana seedlings, is mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1) and WEI7/ANTHRANILATE SYNTHASE β1 (ASB1) genes that encode α- and β-subunits of a rate-limiting enzyme of Trp biosynthesis, anthranilate synthase. Upregulation of WEI2/ASA1 and WEI7/ASB1 by ethylene results in the accumulation of auxin in the tip of primary root, whereas loss-of-function mutations in these genes prevent the ethylene-mediated auxin increase. Furthermore, wei2 and wei7 suppress the high-auxin phenotypes of superroot1 (sur1) and sur2, two auxin-overproducing mutants, suggesting that the roles of WEI2 and WEI7 in the regulation of auxin biosynthesis are not restricted to the ethylene response. Together, these findings reveal that ASA1 and ASB1 are key elements in the regulation of auxin production and an unexpected node of interaction between ethylene responses and auxin biosynthesis in Arabidopsis. This study provides a mechanistic explanation for the root-specific ethylene insensitivity of wei2 and wei7, illustrating how interactions between hormones can be used to achieve response specificity.

454 citations

Journal ArticleDOI
TL;DR: Relationships between NH4+ and NO3− metabolism have important implications for harmful algal blooms, development of nutrient criteria for management, and modeling of nutrient uptake by phytoplankton, particularly in conditions where eutrophication is increasing and the redox state of N loads is changing.
Abstract: Anthropogenic activities are altering total nutrient loads to many estuaries and freshwaters, resulting in high loads not only of total nitrogen (N), but in some cases, of chemically reduced forms, notably NH4+. Long thought to be the preferred form of N for phytoplankton uptake, NH4+ may actually suppress overall growth when concentrations are sufficiently high. NH4+ has been well known to be inhibitory or repressive for NO3‐ uptake and assimilation, but the concentrations of NH4+ that promote vs. repress NO3‐ uptake, assimilation, and growth in different phytoplankton groups and under different growth conditions are not well understood. Here, we review N metabolism first in a “generic” eukaryotic cell, and the contrasting metabolic pathways and regulation of NH4+ and NO3− when these substrates are provided individually under equivalent growth conditions. Then the metabolic interactions of these substrates are described when both are provided together, emphasizing the cellular challenge of balancing nutrient acquisition with photosynthetic energy balance in dynamic environments. Conditions under which dissipatory pathways such as dissimilatory NO3−/ NO2− reduction to NH4+ and photorespiration that may lead to growth suppression are highlighted. While more is known about diatoms, taxon-specific differences in NH4+ and NO3− metabolism that may contribute to changes in phytoplankton community composition when the composition of the N pool changes are presented. These relationships have important implications for harmful algal blooms, development of nutrient criteria for management, and modeling of nutrient uptake by phytoplankton, particularly in conditions where eutrophication is increasing and the redox state of N loads is changing.

453 citations

Journal ArticleDOI
TL;DR: In this article, large-scale molecular dynamics simulations were used to study the response of carbon nanotubes to a tensile load, and it was shown that the curvature of the tube curvature determines the mechanical response.
Abstract: Large-scale molecular dynamics simulations were used to study the response of carbon nanotubes to a tensile load. Plastic or brittle behaviors can occur depending upon the external conditions and tube symmetry. All tubes are brittle at high strain and low temperature, while at low strain and high temperature armchair $(n,n)$ nanotubes can be completely or partially ductile. In zigzag $(n,0)$ tubes ductile behavior is expected for tubes with $nl14$, while larger tubes are completely brittle. In both cases the curvature determines the mechanical response.

452 citations

Journal ArticleDOI
TL;DR: The hypothesis that herbivores select most strongly on genetic variation in life-history, morphological and physical resistance traits, but the greater pleiotropic effects of genes controlling these traits impose strong constraints on their evolution is proposed.
Abstract: Summary 1. Although secondary metabolites are recognized as fundamental to the defence of plants against insect and mammalian herbivores, their relative importance compared to other potential defensive plant traits (e.g. physical resistance, gross morphology, life-history, primary chemistry and physiology) are not well understood. 2. We conducted a meta-analysis to answer the question: What types of genetically variable plant traits most strongly predict resistance against herbivores? We performed a comprehensive literature search and obtained 499 separate measurements of the strength of covariation (measured as genetic correlations) between plant traits and herbivore susceptibility – these were extracted from 72 studies involving 19 plant families. 3. Surprisingly, we found no overall association between the concentrations of secondary metabolites and herbivore susceptibility – plant traits other than secondary metabolites most strongly predicted herbivore susceptibility. Specifically, genetic variation in life-history traits (e.g. flowering time, growth rate) consistently exhibited the strongest genetic correlations with susceptibility. Genetic variation in gross morphological traits (e.g. no. branches, plant size) and physical resistance traits (e.g. latex, trichomes) were also frequently correlated with variation in herbivore susceptibility, but these relationships depended on attributes of the herbivores (e.g. feeding guild) and plants (e.g. longevity). 4. These results call into question the conventional wisdom that secondary metabolites are the most important anti-herbivore defence of plants. We propose the hypothesis that herbivores select most strongly on genetic variation in life-history, morphological and physical resistance traits, but the greater pleiotropic effects of genes controlling these traits impose strong constraints on their evolution. Meanwhile, secondary metabolites could have evolved to be important defensive mechanisms not because they have the largest effect on herbivores, but because the constraints on their evolution are the weakest.

452 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,458
20194,888
20184,522