scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.
Topics: Population, Thin film, Silicon, Gene, Poison control


Papers
More filters
Journal ArticleDOI
TL;DR: The genetic encoding of a norbornene amino acid using the pyrrolysyl tRNA synthetase/tRNA(CUA) pair in Escherichia coli and mammalian cells and the rapid bioorthogonal site-specific labelling of a protein on the mammalian cell surface is demonstrated.
Abstract: The site-specific incorporation of bioorthogonal groups via genetic code expansion provides a powerful general strategy for site-specifically labelling proteins with any probe. However, the slow reactivity of the bioorthogonal functional groups that can be encoded genetically limits the utility of this strategy. We demonstrate the genetic encoding of a norbornene amino acid using the pyrrolysyl tRNA synthetase/tRNA(CUA) pair in Escherichia coli and mammalian cells. We developed a series of tetrazine-based probes that exhibit 'turn-on' fluorescence on their rapid reaction with norbornenes. We demonstrate that the labelling of an encoded norbornene is specific with respect to the entire soluble E. coli proteome and thousands of times faster than established encodable bioorthogonal reactions. We show explicitly the advantages of this approach over state-of-the-art bioorthogonal reactions for protein labelling in vitro and on mammalian cells, and demonstrate the rapid bioorthogonal site-specific labelling of a protein on the mammalian cell surface.

407 citations

Journal ArticleDOI
TL;DR: This transformable liquid-metal nanomedicine, based on a core–shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell, provides a new strategy for engineering theranostic agents with low toxicity.
Abstract: To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core-shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity.

407 citations

Journal ArticleDOI
TL;DR: These methods, described in this paper, are especially valuable when investigating the effects of pesticide applications, environmental pollution and diseases on colony survival.
Abstract: SummaryA variety of methods are used in honey bee research and differ depending on the level at which the research is conducted. On an individual level, the handling of individual honey bees, including the queen, larvae and pupae are required. There are different methods for the immobilising, killing and storing as well as determining individual weight of bees. The precise timing of developmental stages is also an important aspect of sampling individuals for experiments. In order to investigate and manipulate functional processes in honey bees, e.g. memory formation and retrieval and gene expression, microinjection is often used. A method that is used by both researchers and beekeepers is the marking of queens that serves not only to help to locate her during her life, but also enables the dating of queens. Creating multiple queen colonies allows the beekeeper to maintain spare queens, increase brood production or ask questions related to reproduction. On colony level, very useful techniques are the measu...

406 citations

Journal ArticleDOI
Monika Gulia-Nuss1, Monika Gulia-Nuss2, Andrew B. Nuss2, Andrew B. Nuss1, Jason M. Meyer1, Jason M. Meyer3, Daniel E. Sonenshine4, R. Michael Roe5, Robert M. Waterhouse, David B. Sattelle6, José de la Fuente7, José de la Fuente8, José M. C. Ribeiro9, Karyn Megy10, Karyn Megy11, Jyothi Thimmapuram1, Jason R. Miller12, Brian P. Walenz9, Brian P. Walenz12, Sergey Koren12, Sergey Koren9, Jessica B. Hostetler9, Jessica B. Hostetler12, Mathangi Thiagarajan13, Mathangi Thiagarajan12, Vinita Joardar9, Vinita Joardar12, Linda Hannick12, Linda Hannick13, Shelby L. Bidwell9, Shelby L. Bidwell12, Martin Hammond11, Sarah Young14, Qiandong Zeng14, Jenica L. Abrudan15, Jenica L. Abrudan16, Francisca C. Almeida17, Nieves Ayllón8, Ketaki Bhide1, Brooke W. Bissinger5, Elena Bonzón-Kulichenko18, Steven D. Buckingham6, Daniel R. Caffrey19, Melissa J. Caimano20, Vincent Croset21, Vincent Croset22, Timothy P. Driscoll23, Timothy P. Driscoll24, Don Gilbert25, Joseph J. Gillespie26, Joseph J. Gillespie24, Gloria I. Giraldo-Calderón1, Gloria I. Giraldo-Calderón15, Jeffrey M. Grabowski9, Jeffrey M. Grabowski1, David Jiang24, Sayed M.S. Khalil, Donghun Kim27, Donghun Kim28, Katherine M. Kocan7, Juraj Koči26, Juraj Koči27, Richard J. Kuhn1, Timothy J. Kurtti29, Kristin Lees30, Kristin Lees31, Emma G. Lang1, Ryan C. Kennedy32, Hyeogsun Kwon28, Hyeogsun Kwon33, Rushika Perera34, Rushika Perera1, Yumin Qi24, Justin D. Radolf20, Joyce M. Sakamoto35, Alejandro Sánchez-Gracia17, Maiara S. Severo36, Maiara S. Severo37, Neal S. Silverman19, Ladislav Šimo27, Ladislav Šimo38, Marta Tojo39, Marta Tojo10, Cristian Tornador40, Janice P. Van Zee1, Jesús Vázquez18, Filipe G. Vieira17, Margarita Villar8, Adam R. Wespiser19, Yunlong Yang28, Jiwei Zhu5, Peter Arensburger41, Patricia V. Pietrantonio28, Stephen C. Barker42, Renfu Shao43, Evgeny M. Zdobnov44, Evgeny M. Zdobnov45, Frank Hauser46, Cornelis J. P. Grimmelikhuijzen46, Yoonseong Park27, Julio Rozas17, Richard Benton21, Joao H. F. Pedra26, Joao H. F. Pedra36, David R. Nelson47, Maria F. Unger15, Jose M. C. Tubio48, Jose M. C. Tubio49, Zhijian Jake Tu24, Hugh M. Robertson50, Martin Shumway37, Martin Shumway12, Granger G. Sutton12, Jennifer R. Wortman12, Daniel Lawson11, Stephen K. Wikel51, Vishvanath Nene12, Vishvanath Nene52, Claire M. Fraser26, Frank H. Collins15, Bruce W. Birren14, Karen E. Nelson12, Elisabet Caler9, Elisabet Caler12, Catherine A. Hill1 
Purdue University1, University of Nevada, Reno2, Monsanto3, Old Dominion University4, North Carolina State University5, University College London6, Oklahoma State University–Stillwater7, Spanish National Research Council8, National Institutes of Health9, University of Cambridge10, Wellcome Trust11, J. Craig Venter Institute12, Leidos13, Broad Institute14, University of Notre Dame15, University of Nevada, Las Vegas16, University of Barcelona17, Carlos III Health Institute18, University of Massachusetts Medical School19, University of Connecticut20, University of Lausanne21, University of Oxford22, West Virginia University23, Virginia Tech24, Indiana University25, University of Maryland, Baltimore26, Kansas State University27, Texas A&M University28, University of Minnesota29, National University of Singapore30, University of Manchester31, University of California, San Francisco32, Iowa State University33, Colorado State University34, Pennsylvania State University35, University of California, Riverside36, Max Planck Society37, ANSES38, University of Santiago de Compostela39, Pompeu Fabra University40, California State Polytechnic University, Pomona41, University of Queensland42, University of the Sunshine Coast43, Swiss Institute of Bioinformatics44, University of Geneva45, University of Copenhagen46, University of Tennessee Health Science Center47, Wellcome Trust Sanger Institute48, University of Vigo49, University of Illinois at Urbana–Champaign50, Quinnipiac University51, International Livestock Research Institute52
TL;DR: Insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival are reported.
Abstract: Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.

406 citations

Journal ArticleDOI
TL;DR: In this article, the amount of nutrients and sediment removed by natural and planted filters was determined by collecting and analyzing runoff at field edges and at various locations in vegetated buffers, and the results showed that the grass and riparian filter strips studied reduced runoff load by 50 to 80%.
Abstract: Vegetated filter strips help reduce non-point source pollution from agricultural areas. Even though they are an accepted and highly promoted practice, little quantitative data exist on their effectiveness under field conditions. The objective of this research was to determine the amount of nutrients and sediment removed by natural and planted filters. This was achieved by collecting and analyzing runoff at field edges and at various locations in vegetated buffers. Total weight of sediment and nutrients in runoff from North Carolina agricultural fields showed that the grass and riparian filter strips studied reduced runoff load by 50 to 80%. Total sediment decrease through the filters was about 80% for both grass and riparian vegetation. The reduction in the chemical load depended on the nutrient and its form. Filters reduced total P load by 50%, but 80% of the soluble PO 4 -P arriving at the field edge frequently passed through the filters. The filters retained 20 to 50% of the NH 4 and approximately 50% of the total Kjeldahl N and NO 3 . High-volume flows commonly overwhelmed both grass and riparian filters next to cultivated fields. Forested ephemeral channels had little vegetation and were effective sediment sinks during the dry season but were ineffective during large storm events because there was little resistance to flow. When possible, drainageways should be designed to hold sediment and to disperse the discharge into a riparian area.

406 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,458
20194,888
20184,522