scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.
Topics: Population, Thin film, Silicon, Gene, Poison control


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between satisfaction and repurchase behavior is moderated by customer, relational, and marketplace characteristics, and the authors further hypothesize that the moderating effects emerge if repurchase is measured as objective behavior but not if it is defined as repurchase intentions.
Abstract: In this research, the authors propose that the relationship between satisfaction and repurchase behavior is moderated by customer, relational, and marketplace characteristics. They further hypothesize that the moderating effects emerge if repurchase is measured as objective behavior but not if it is measured as repurchase intentions. To test for systematic differences in effects, the authors estimate identical models using both longitudinal repurchase measures and survey measures as the dependent variable. The results suggest that the relationship between customer satisfaction and repurchase behavior is contingent on the moderating effects of convenience, competitive intensity, customer involvement, and household income. As the authors predicted, the results are significantly different for self-reported repurchase intentions and objective repurchase behavior. The conceptual framework and empirical findings reinforce the importance of moderating influences and offer new insights that enhance the understanding of what drives repurchase behavior.

881 citations

Journal ArticleDOI
TL;DR: This paper used Gaussian spatial autoregressive models, fit with widely available software, to examine breeding habitat relationships for three common Neotropical migrant songbirds in the southern Appalachian Mountains of North Carolina and Tennessee, USA.
Abstract: Recognition and analysis of spatial autocorrelation has defined a new par- adigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available software, to examine breeding habitat relationships for three common Neotropical migrant songbirds in the southern Appalachian Mountains of North Carolina and Tennessee, USA. In preliminary models that ignored space, the abundance of all three species was cor- related with both local- and landscape-scale habitat variables. These models were then modified to account for broadscale spatial trend (via trend surface analysis) and fine-scale autocorrelation (via an autoregressive spatial covariance matrix). Residuals from ordinary least squares regression models were autocorrelated, indicating that the assumption of independent errors was violated. In contrast, residuals from autoregressive models showed little spatial pattern, suggesting that these models were appropriate. The magnitude of habitat effects tended to decrease, and the relative importance of different habitat variables shifted when we incorporated broadscale and then fine-scale space into the analysis. The degree to which habitat effects changed when space was added to the models was roughly correlated with the amount of spatial structure in the habitat variables. Spatial pattern in the residuals from ordinary least squares models may result from failure to include or adequately measure autocorrelated habitat variables. In addition, con- tagious processes, such as conspecific attraction, may generate spatial patterns in species abundance that cannot be explained by habitat models. For our study species, spatial patterns in the ordinary least squares residuals suggest that a scale of 500-1000 m would be ap- propriate for investigating possible contagious processes.

881 citations

Journal ArticleDOI
TL;DR: SSR technology presents the potential advantages of reliability, reproducibility, discrimination, standardization and cost effectiveness over RFLPs, and represents the optimum approach for the identification and pedigree validation of maize genotypes compared to other currently available methods.
Abstract: The utility of 131 simple sequence repeat (SSR) loci to characterize and identify maize inbred lines, validate pedigree, and show associations among inbred lines was evaluated using a set of 58 inbred lines and four hybrids. Thirteen sets of inbred parent-progeny triplet pedigrees together with four hybrids and their parental lines were used to quantify incidences of scoring that departed from expectations based upon simple Mendelian inheritance. Results were compared to those obtained using 80 restriction fragment length polymorphism (RFLP) probes. Over all inbred triplets, 2.2% of SSRs and 3.6% of RFLP loci resulted in profiles that were scored as having segregated in a non-Mendelian fashion. Polymorphic index content (PIC, a measure of discrimination ability) values ranged from 0.06 to 0.91 for SSRs and from 0.10 to 0.84 for RFLPs. Mean values for PIC for SSRs and RFLPs were similar, approximately 0.62. However, PIC values for nine SSRs exceeded the maximum PIC for RFLPs. Di-repeats gave the highest mean PIC scores for SSRs but this class of repeats can result in “stutter” bands that complicate accurate genotyping. Associations among inbreds were similar for SSR and RFLP data, closely approximating expectations from known pedigrees. SSR technology presents the potential advantages of reliability, reproducibility, discrimination, standardization and cost effectiveness over RFLPs. SSR profiles can be readily interpreted in terms of alleles at mapped loci across a broad range of maize germ plasm. Consequently, SSRs represent the optimum approach for the identification and pedigree validation of maize genotypes compared to other currently available methods.

877 citations

Posted ContentDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet, Gabriel A. Al-Ghalith2, Harriet Alexander3, Harriet Alexander4, Eric J. Alm5, Manimozhiyan Arumugam6, Francesco Asnicar7, Yang Bai8, Jordan E. Bisanz9, Kyle Bittinger10, Asker Daniel Brejnrod6, Colin J. Brislawn11, C. Titus Brown4, Benjamin J. Callahan12, Andrés Mauricio Caraballo-Rodríguez13, John Chase1, Emily K. Cope1, Ricardo Silva13, Pieter C. Dorrestein13, Gavin M. Douglas14, Daniel M. Durall15, Claire Duvallet5, Christian F. Edwardson16, Madeleine Ernst13, Mehrbod Estaki15, Jennifer Fouquier17, Julia M. Gauglitz13, Deanna L. Gibson15, Antonio Gonzalez18, Kestrel Gorlick1, Jiarong Guo19, Benjamin Hillmann2, Susan Holmes20, Hannes Holste18, Curtis Huttenhower21, Curtis Huttenhower22, Gavin A. Huttley23, Stefan Janssen24, Alan K. Jarmusch13, Lingjing Jiang18, Benjamin D. Kaehler23, Kyo Bin Kang13, Kyo Bin Kang25, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley26, Dan Knights2, Irina Koester18, Irina Koester13, Tomasz Kosciolek18, Jorden Kreps1, Morgan G. I. Langille14, Joslynn S. Lee27, Ruth E. Ley28, Ruth E. Ley29, Yong-Xin Liu8, Erikka Loftfield, Catherine A. Lozupone17, Massoud Maher18, Clarisse Marotz18, Bryan D Martin30, Daniel McDonald18, Lauren J. McIver21, Lauren J. McIver22, Alexey V. Melnik13, Jessica L. Metcalf31, Sydney C. Morgan15, Jamie Morton18, Ahmad Turan Naimey1, Jose A. Navas-Molina18, Jose A. Navas-Molina32, Louis-Félix Nothias13, Stephanie B. Orchanian18, Talima Pearson1, Samuel L. Peoples30, Samuel L. Peoples33, Daniel Petras13, Mary L. Preuss34, Elmar Pruesse17, Lasse Buur Rasmussen6, Adam R. Rivers35, Ii Michael S Robeson36, Patrick Rosenthal34, Nicola Segata7, Michael Shaffer17, Arron Shiffer1, Rashmi Sinha, Se Jin Song18, John R. Spear37, Austin D. Swafford18, Luke R. Thompson38, Luke R. Thompson39, Pedro J. Torres26, Pauline Trinh30, Anupriya Tripathi18, Anupriya Tripathi13, Peter J. Turnbaugh9, Sabah Ul-Hasan40, Justin J. J. van der Hooft41, Fernando Vargas18, Yoshiki Vázquez-Baeza18, Emily Vogtmann, Max von Hippel42, William A. Walters28, Yunhu Wan, Mingxun Wang13, Jonathan Warren43, Kyle C. Weber44, Kyle C. Weber35, Chase Hd Williamson1, Amy D. Willis30, Zhenjiang Zech Xu18, Jesse R. Zaneveld30, Yilong Zhang45, Rob Knight18, J. Gregory Caporaso1 
24 Oct 2018-PeerJ
TL;DR: QIIME 2 provides new features that will drive the next generation of microbiome research, including interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.
Abstract: We present QIIME 2, an open-source microbiome data science platform accessible to users spanning the microbiome research ecosystem, from scientists and engineers to clinicians and policy makers. QIIME 2 provides new features that will drive the next generation of microbiome research. These include interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.

875 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,458
20194,888
20184,522