scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.


Papers
More filters
Journal Article
TL;DR: A review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications as mentioned in this paper.
Abstract: Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

778 citations

Book
26 Oct 2001
TL;DR: In this article, a solution-phase nanocluster synthesis and mechanisms of formation magic number metal clusters electrochemical synthesis of high aspect ratio gold particles template synthesis of metal nanostructures using dendrimer templates nanosphere lithography electrochemistry of monolayer protected gold clusters modelling of nanoparticle optical properties hyper-Raleigh scattering of nanoparticles nanoparticle single electron devices DNA detection using gold nanoparticles conductance-based nanoparticle chemical sensors surface plasmon resonance detection of biomolecules synthesis of conductive polymer-gold particle composites optical properties of complex metal nan
Abstract: Introduction to particle synthesis, optical, and electronic properties solution-phase nanocluster synthesis and mechanisms of formation magic number metal clusters electrochemical synthesis of high aspect ratio gold particles template synthesis of metal nanostructures synthesis of metal nanoclusters using dendrimer templates nanosphere lithography electrochemistry of monolayer protected gold clusters modelling of nanoparticle optical properties hyper-Raleigh scattering of nanoparticles nanoparticle single electron devices DNA detection using gold nanoparticles conductance-based nanoparticle chemical sensors surface plasmon resonance detection of biomolecules synthesis of conductive polymer-gold particle composites optical properties of complex metal nanostructures si-coated nanoparticles nanoparticle arrays mixed particle arrays nanoparticles in electronic devices.

778 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the Baliga high-frequency figure of merit for power semiconductor devices operating in high frequency circuits and showed that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond.
Abstract: A figure of merit (the Baliga high-frequency figure of merit) is derived for power semiconductor devices operating in high-frequency circuits. Using this figure of merit, it is predicted that the power losses incurred in the power device will increase as the square root of the operating frequency and approximately in proportion to the output power. By relating the device power dissipation to the intrinsic material parameters, it is shown that the power loss can be reduced by using semiconductors with larger mobility and critical electric field for breakdown. Examination of data in the literature indicates that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond. >

776 citations

Journal ArticleDOI
25 May 2018-Science
TL;DR: The role of bile acids in immunosurveillance of tumors growing in the liver is focused on and altering commensal gut bacteria induced a liver-selective antitumor effect.
Abstract: INTRODUCTION Primary liver tumors and liver metastasis currently represent the leading cause of cancer-related deaths. The liver intimately cross-talks with the gut and performs many essential functions related to digestion, metabolism of nutrients, and clearance of bacterial metabolites. Diseased livers are often associated with altered gut bacterial composition, or dysbiosis, and it has been suggested that gut bacterial products contribute to malignant transformation of hepatocytes. The liver is exposed to the gut microbiome through the portal vein and is an immunological organ that is heavily populated by immune cells. Emerging studies have shown that gut commensal bacteria are important regulators of antitumor immunity. Although it has been established that the gut microbiome influences the efficacy of cancer immunotherapy, the role of gut bacteria in antitumor surveillance in the liver is poorly understood. RATIONALE The liver is exposed to gut bacterial metabolites and products by way of blood from the intestine, which comprises 70% of the whole liver blood supply. Changes in the gut microbiome may affect immune cell function in the liver, and commensal bacteria can mediate the metabolism of primary into secondary bile acids, which recirculate back into the liver through the enterohepatic circulation. Given that bile acids are known to be involved in liver cancer development, we focused on the role of bile acids in immunosurveillance of tumors growing in the liver. We altered gut bacteria and examined changes of hepatic immune cells and antitumor immunity directed against liver tumors. Uncovering how the gut microbiome uses bile acids to shape immunity to liver cancer may have future therapeutic applications. RESULTS Using one primary liver model and three liver metastasis models, we found that altering commensal gut bacteria induced a liver-selective antitumor effect. A selective increase of hepatic CXCR6 + natural killer T (NKT) cells was observed, independent of mouse strain, gender, or presence of liver tumors. The accumulated hepatic NKT cells showed an activated phenotype and produced more interferon-γ upon antigen stimulation. In vivo studies using both antibody-mediated cell depletion and NKT-deficient mice confirmed that NKT cells mediated the inhibition of tumor growth in the liver. Further investigation showed that NKT cell accumulation was regulated by the expression of CXCL16, the solo ligand for CXCR6, on liver sinusoidal endothelial cells, which form the lining of liver capillaries and the first barrier for the blood coming from the gut entering the liver. Primary bile acids increased CXCL16 expression, whereas secondary bile acids showed the opposite effect. Removing gram-positive bacteria by antibiotic treatment with vancomycin, which contains the bacteria mediating primary-to-secondary bile acid conversion, was sufficient to induce hepatic NKT cell accumulation and decrease liver tumor growth. Feeding secondary bile acids or colonization of bile acid–metabolizing bacteria, reversed both NKT cell accumulation and inhibition of liver tumor growth in mice with altered gut commensal bacteria. In nontumor liver tissue from human patients with primary liver cancer, primary bile acid chenodeoxycholic acid (CDCA) levels correlated with CXCL16 expression, whereas an inverse correlation was observed with secondary bile acid glycolithocholate (GLCA), suggesting that the finding may apply to humans. CONCLUSION We describe a mechanism by which the gut microbiome uses bile acids as messengers to control a chemokine-dependent accumulation of hepatic NKT cells and antitumor immunity in the liver, against both primary and metastatic liver tumors. These findings not only have possible implications for future cancer therapeutic studies but also provide a link between the gut microbiome, its metabolites, and immune responses in the liver.

771 citations

Journal ArticleDOI
TL;DR: A method is proposed for estimating effective population size from data on linkage disequilibrium among neutral genes at several polymorphic loci or restriction sites, but for very tightly linked genes estimates of N are more dependent on long-term than on recent population history.
Abstract: A method is proposed for estimating effective population size (N) from data on linkage disequilibrium among neutral genes at several polymorphic loci or restriction sites. The efficiency of the method increases with larger sample size and more tightly linked genes; but for very tightly linked genes estimates of N are more dependent on long-term than on recent population history. Two sets of data are analysed as examples.

770 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,459
20194,888
20184,522