scispace - formally typeset
Search or ask a question
Institution

North Carolina State University

EducationRaleigh, North Carolina, United States
About: North Carolina State University is a education organization based out in Raleigh, North Carolina, United States. It is known for research contribution in the topics: Population & Thin film. The organization has 44161 authors who have published 101744 publications receiving 3456774 citations. The organization is also known as: NCSU & North Carolina State University at Raleigh.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a proper sequence of statistical tests that allows the practitioner to handle cases in which a high order of differencing may be needed is presented, and the proper sequence is not the traditional sequence, which begins with a test for a single unit root.
Abstract: One way of handling nonstationarity in time series is to compute first differences and fit a model to the differenced series unless the differenced series also looks nonstationary. In that case, second- or higher-order differencing is done. To decide if the current degree of differencing is sufficient, one can look at the autocorrelation function for slow decay. A formal statistical test for the need to difference further is available if one is willing to assume that at most one more difference will render the series stationary. In this article, we present a proper sequence of statistical tests that allows the practitioner to handle cases in which a high order of differencing may be needed. The proper sequence is not the traditional sequence, which begins with a test for a single unit root.

638 citations

Journal ArticleDOI
TL;DR: Evidence suggests that natural seagrass population shifts are disrupted, slowed or indefinitely blocked by cultural eutrophication, and there are relatively few known examples of seagRass meadow recovery following nutrient reductions.

637 citations

BookDOI
20 Jul 2017
TL;DR: Finite Difference Methods in Heat Transfer as mentioned in this paper presents a step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications.
Abstract: Finite Difference Methods in Heat Transfer presents a clear, step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications The finite difference techniques presented apply to the numerical solution of problems governed by similar differential equations encountered in many other fields Fundamental concepts are introduced in an easy-to-follow mannerRepresentative examples illustrate the application of a variety of powerful and widely used finite difference techniques The physical situations considered include the steady state and transient heat conduction, phase-change involving melting and solidification, steady and transient forced convection inside ducts, free convection over a flat plate, hyperbolic heat conduction, nonlinear diffusion, numerical grid generation techniques, and hybrid numerical-analytic solutions

636 citations

Journal ArticleDOI
TL;DR: Two new soft X-ray scanning transmission microscopes located at the Advanced Light Source (ALS) have been designed, built and commissioned and interferometer control implemented in both microscopes allows the precise measurement of the transverse position of the zone plate relative to the sample.
Abstract: Two new soft X-ray scanning transmission microscopes located at the Advanced Light Source (ALS) have been designed, built and commissioned. Interferometer control implemented in both microscopes allows the precise measurement of the transverse position of the zone plate relative to the sample. Long-term positional stability and compensation for transverse displacement during translations of the zone plate have been achieved. The interferometer also provides low-distortion orthogonal x, y imaging. Two different control systems have been developed: a digital control system using standard VXI components at beamline 7.0, and a custom feedback system based on PC AT boards at beamline 5.3.2. Both microscopes are diffraction limited with the resolution set by the quality of the zone plates. Periodic features with 30 nm half period can be resolved with a zone plate that has a 40 nm outermost zone width. One microscope is operating at an undulator beamline (7.0), while the other is operating at a novel dedicated bending-magnet beamline (5.3.2), which is designed specifically to illuminate the microscope. The undulator beamline provides count rates of the order of tens of MHz at high-energy resolution with photon energies of up to about 1000 eV. Although the brightness of a bending-magnet source is about four orders of magnitude smaller than that of an undulator source, photon statistics limited operation with intensities in excess of 3 MHz has been achieved at high energy resolution and high spatial resolution. The design and performance of these microscopes are described.

636 citations

Journal ArticleDOI
TL;DR: In this article, the percentiles of the distributions for time series that have unit roots at the seasonal lag are computed by Monte Carlo integration for finite samples and by analytic techniques and Monte-Carlo integration for the limit case.
Abstract: Regression estimators of coefficients in seasonal autoregressive models are described. The percentiles of the distributions for time series that have unit roots at the seasonal lag are computed by Monte Carlo integration for finite samples and by analytic techniques and Monte Carlo integration for the limit case. The tabled distributions may be used to test the hypothesis that a time series has a seasonal unit root.

635 citations


Authors

Showing all 44525 results

NameH-indexPapersCitations
Yi Cui2201015199725
Jing Wang1844046202769
Rodney S. Ruoff164666194902
Carlos Bustamante161770106053
David W. Johnson1602714140778
Joseph Wang158128298799
David Tilman158340149473
Jay Hauser1552145132683
James M. Tour14385991364
Joseph T. Hupp14173182647
Bin Liu138218187085
Rudolph E. Tanzi13563885376
Richard C. Boucher12949054509
David B. Allison12983669697
Robert W. Heath128104973171
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023160
2022652
20215,262
20205,459
20194,888
20184,522