scispace - formally typeset
Search or ask a question
Institution

Northeastern University (China)

EducationShenyang, China
About: Northeastern University (China) is a education organization based out in Shenyang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 36087 authors who have published 36125 publications receiving 426807 citations. The organization is also known as: Dōngběi Dàxué & Northeastern University (东北大学).


Papers
More filters
Journal ArticleDOI
06 Feb 2012-Small
TL;DR: Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors that exhibit excellent electrochemical performances and cyclic stabilities.
Abstract: Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s −1 , the specific capacitance of the pillared GP is 138 F g −1 and 83.2 F g −1 with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s −1 , the specific capacitance can reach 80 F g −1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.

311 citations

Journal ArticleDOI
TL;DR: In this paper, a deep learning-based approach for bearing fault diagnosis is presented, which preprocesses sensor signals using short-time Fourier transform (STFT) and uses an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults.
Abstract: Bearing is one of the most critical components in most electrical and power drives. Effective bearing fault diagnosis is important for keeping the electrical and power drives safe and operating normally. In the age of Internet of Things and Industrial 4.0, massive real-time data are collected from bearing health monitoring systems. Mechanical big data have the characteristics of large volume, diversity, and high velocity. There are two major problems in using the existing methods for bearing fault diagnosis with big data. The features are manually extracted relying on much prior knowledge about signal processing techniques and diagnostic expertise, and the used models have shallow architectures, limiting their capability in fault diagnosis. Effectively mining features from big data and accurately identifying the bearing health conditions with new advanced methods have become new issues. This paper presents a deep learning-based approach for bearing fault diagnosis. The presented approach preprocesses sensor signals using short-time Fourier transform (STFT). Based on a simple spectrum matrix obtained by STFT, an optimized deep learning structure, large memory storage retrieval (LAMSTAR) neural network, is built to diagnose the bearing faults. Acoustic emission signals acquired from a bearing test rig are used to validate the presented method. The validation results show the accurate classification performance on various bearing faults under different working conditions. The performance of the presented method is also compared with other effective bearing fault diagnosis methods reported in the literature. The comparison results have shown that the presented method gives much better diagnostic performance, even at relatively low rotating speeds.

309 citations

Journal ArticleDOI
TL;DR: A novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader’s output and ensures that all signals are bounded in the closed-loop system.
Abstract: This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader’s output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.

308 citations

Journal ArticleDOI
Hua-Yu Shi1, Yin-Jian Ye1, Kuan Liu1, Yu Song1, Xiaoqi Sun1 
TL;DR: This study synthesized a sulfo-self-doped PANI cathode by a facile electrochemical copolymerization process and opens a door for the use of conducting polymers as cathode materials for high-performance rechargeable zinc batteries.
Abstract: Rechargeable aqueous zinc batteries are promising energy-storage systems for grid applications. Highly conductive polyaniline (PANI) is a potential cathode, but it tends to deactivate in electrolytes with low acidity (i.e. pH >1) owing to deprotonation of the polymer. In this study, we synthesized a sulfo-self-doped PANI electrode by a facile electrochemical copolymerization process. The -SO3 - self-dopant functions as an internal proton reservoir to ensure a highly acidic local environment and facilitate the redox process in the weakly acidic ZnSO4 electrolyte. In a full zinc cell, the self-doped PANI cathode provided a high capacity of 180 mAh g-1 , excellent rate performance of 70 % capacity retention with a 50-fold current-density increase, and a long cycle life of over 2000 cycles with coulombic efficiency close to 100 %. Our study opens a door for the use of conducting polymers as cathode materials for high-performance rechargeable zinc batteries.

305 citations

Journal ArticleDOI
TL;DR: A new approach to fabricate an integrated power pack by hybridizing energy harvest and storage processes that incorporates a series-wound dye-sensitized solar cell and a lithium ion battery on the same Ti foil that has double-sided TiO(2) nanotube (NTs) arrays.
Abstract: We present a new approach to fabricate an integrated power pack by hybridizing energy harvest and storage processes. This power pack incorporates a series-wound dye-sensitized solar cell (DSSC) and a lithium ion battery (LIB) on the same Ti foil that has double-sided TiO(2) nanotube (NTs) arrays. The solar cell part is made of two different cosensitized tandem solar cells based on TiO(2) nanorod arrays (NRs) and NTs, respectively, which provide an open-circuit voltage of 3.39 V and a short-circuit current density of 1.01 mA/cm(2). The power pack can be charged to about 3 V in about 8 min, and the discharge capacity is about 38.89 μAh under the discharge density of 100 μA. The total energy conversion and storage efficiency for this system is 0.82%. Such an integrated power pack could serve as a power source for mobile electronics.

304 citations


Authors

Showing all 36436 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Hui-Ming Cheng147880111921
Yonggang Huang13679769290
Yang Liu1292506122380
Tao Zhang123277283866
J. R. Dahn12083266025
Terence G. Langdon117115861603
Frank L. Lewis114104560497
Xin Li114277871389
Peng Wang108167254529
David J. Hill107136457746
Jian Zhang107306469715
Xuemin Shen106122144959
Yi Zhang102181753417
Tao Li102248360947
Network Information
Related Institutions (5)
Northeastern University
58.1K papers, 1.7M citations

84% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

83% related

Tsinghua University
200.5K papers, 4.5M citations

81% related

Nanyang Technological University
112.8K papers, 3.2M citations

81% related

Tianjin University
79.9K papers, 1.2M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022906
20214,689
20204,118
20193,653
20182,878