scispace - formally typeset
Search or ask a question
Institution

Northeastern University (China)

EducationShenyang, China
About: Northeastern University (China) is a education organization based out in Shenyang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 36087 authors who have published 36125 publications receiving 426807 citations. The organization is also known as: Dōngběi Dàxué & Northeastern University (东北大学).


Papers
More filters
Journal ArticleDOI
TL;DR: The corrosion rate of magnesium implants can be closely tailored by adjusting apatite coating thickness and thereby monitoring the release of magnesium ions into the body.
Abstract: Magnesium is light, biocompatible and has similar mechanical properties to natural bone, so it has the potential to be used as a biodegradable material for orthopedic applications. However, pure magnesium severely corrodes in a physiological environment, which may result in fracture prior to substantial tissue healing. Hydroxyapatite (HA) is the main composition of natural bone. It has excellent bioactivity and osteoconductivity. In this study, HA coating with two different thicknesses was applied onto the surface of pure magnesium substrates using a biomimetic technique. The corrosion rate of the surface-treated substrates was tested. It was found that both types of coatings substantially slowed down the corrosion of the substrate, and the dual coating was more effective than the single coating in hindering the degradation of the substrate. Thus, the corrosion rate of magnesium implants can be closely tailored by adjusting apatite coating thickness and thereby monitoring the release of magnesium ions into the body.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the nonlinear forced vibration of thin-walled metal foam cylindrical shells reinforced with functionally graded graphene platelets and found that the inclusion of graphene platelet in the shells weakens the non-linear coupling effect.
Abstract: In the present study, we analyze the nonlinear forced vibration of thin-walled metal foam cylindrical shells reinforced with functionally graded graphene platelets. Attention is focused on the 1:1:1:2 internal resonances, which is detected to exist in this novel nanocomposite structure. Three kinds of porosity distribution and different kinds of graphene platelet distribution are considered. The equations of motion and the compatibility equation are deduced according to the Donnell’s nonlinear shell theory. The stress function is introduced, and then, the four-degree-of-freedom nonlinear ordinary differential equations (ODEs) are obtained via the Galerkin method. The numerical analysis of nonlinear forced vibration responses is presented by using the pseudo-arclength continuation technique. The present results are validated by comparison with those in existing literature for special cases. Results demonstrate that the amplitude–frequency relations of the system are very complex due to the 1:1:1:2 internal resonances. Porosity distribution and graphene platelet (GPL) distribution influence obviously the nonlinear behavior of the shells. We also found that the inclusion of graphene platelets in the shells weakens the nonlinear coupling effect. Moreover, the effects of the porosity coefficient and GPL weight fraction on the nonlinear dynamical response are strongly related to the porosity distribution as well as graphene platelet distribution.

98 citations

Journal ArticleDOI
TL;DR: The empirical evaluation on the selection of a supply chain software tool has shown that the developed method offers remarkable insights of software development and can be incorporated into the industrial informatics practice of an organization with a moderate cost.
Abstract: Numerous software architecture proposals are available to industrial information engineers in developing their enterprise information systems. While those proposals and corresponding methodologies are helpful to engineers in determining appropriate architecture, the systematic methods for the evaluation of software architecture are scarce. To select appropriate software architecture from various alternatives appropriately, a scenario-based method has been proposed to assess how software architecture affects the fulfillment of business requirements. The empirical evaluation on the selection of a supply chain software tool has shown that the developed method offers remarkable insights of software development and can be incorporated into the industrial informatics practice of an organization with a moderate cost.

98 citations

Journal ArticleDOI
TL;DR: In this article, the effect of heating rate on ferrite recrystallization and austenite formation of cold rolled dual-phase (DP) steel (0.1C−0.4Si−1.6Mn) was investigated.

98 citations

Journal ArticleDOI
TL;DR: Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells.
Abstract: Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be encapsulated into LTMSNs. Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells. Owing to the presence of TPGS-containing lipid layer, LTMSNs-DOX exhibited higher uptake efficiency, cytotoxicity, and increased intracellular accumulation in resistant MCF-7/Adr cells compared with DOX solution, proving to be a promising vehicle to realize intracellular drug release and inhibit drug efflux.

98 citations


Authors

Showing all 36436 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Hui-Ming Cheng147880111921
Yonggang Huang13679769290
Yang Liu1292506122380
Tao Zhang123277283866
J. R. Dahn12083266025
Terence G. Langdon117115861603
Frank L. Lewis114104560497
Xin Li114277871389
Peng Wang108167254529
David J. Hill107136457746
Jian Zhang107306469715
Xuemin Shen106122144959
Yi Zhang102181753417
Tao Li102248360947
Network Information
Related Institutions (5)
Northeastern University
58.1K papers, 1.7M citations

84% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

83% related

Tsinghua University
200.5K papers, 4.5M citations

81% related

Nanyang Technological University
112.8K papers, 3.2M citations

81% related

Tianjin University
79.9K papers, 1.2M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022906
20214,689
20204,118
20193,653
20182,878