scispace - formally typeset
Search or ask a question
Institution

Northeastern University (China)

EducationShenyang, China
About: Northeastern University (China) is a education organization based out in Shenyang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 36087 authors who have published 36125 publications receiving 426807 citations. The organization is also known as: Dōngběi Dàxué & Northeastern University (东北大学).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the recent advancement of the materials preparation, synthesis, characterization, and performance validation as well as fundamental understanding of the functional mechanisms are comprehensively reviewed, and several technical challenges and strategies are respectively analyzed and utilized to improve the materials' electrochemical performances, including morphology control, surface engineering, doping and construction of composite electrodes.

148 citations

Journal ArticleDOI
TL;DR: The droplet in a microfluidics system can be seen as an isolated reactor, with low consumption of samples and reagents, minimal dispersion and flexible control.
Abstract: Since the start of micro total analysis systems, manipulation of droplets in a microfluidic channel has been one of the most important branches of microfluidics The scale of the droplet is remarkably small so that its mixing and reaction are rapid With an array of channels and reliable programming, droplet microfluidics provides a high-throughput platform for applications in chemistry and biology The droplet in a microfluidics system can be seen as an isolated reactor, with low consumption of samples and reagents, minimal dispersion and flexible control We review progress in manipulation of droplets in microfluidic systems and their applications We also discuss future perspectives

148 citations

Journal ArticleDOI
TL;DR: In this article, the ductile Cu-Al-Mn-based shape memory alloys (SMAs) have been used for guidewire applications and shown to have various properties of superelasticity, shape memory effect, two-way memory effect and internal friction.
Abstract: Recent progress on ductile Cu–Al–Mn-based shape memory alloys (SMAs) is presented. The various properties of superelasticity (SE), the shape memory effect (SME), the two-way memory effect (TWME) and internal friction are enhanced by controlling grain size and texture through thermomechanical treatments. It is also shown that the control of stress-induced martensitic transformation due to cold-rolling of Cu–Al–Mn SMAs results in low thermal expansion (LTE). In addition, the medical application of the Cu–Al–Mn-based SMAs to guidewire is introduced.

147 citations

Journal ArticleDOI
TL;DR: Analysis and simulation results show that the proposed UMBP significantly improves the performance of multi-hop broadcast in terms of one-hop delay, message propagation speed, and message reception rate.
Abstract: In vehicular ad hoc networks (VANETs), multi-hop wireless broadcast has been considered a promising technology to support safety-related applications that have strict quality-of-service (QoS) requirements such as low latency, high reliability, scalability, etc. However, in the urban transportation environment, the efficiency of multi-hop broadcast is critically challenged by complex road structure, severe channel contention, message redundancy, etc. In this paper, we propose an urban multi-hop broadcast protocol (UMBP) to disseminate emergency messages. To lower emergency message transmission delay and reduce message redundancy, UMBP includes a novel forwarding node selection scheme that utilizes iterative partition, mini-slot, and black-burst to quickly select remote neighboring nodes, and a single forwarding node is successfully chosen by the asynchronous contention among them. Then, bidirectional broadcast, multi-directional broadcast, and directional broadcast are designed according to the positions of the emergency message senders. Specifically, at the first hop, bidirectional broadcast or multi-directional broadcast conducts the forwarding node selection scheme in different directions simultaneously, and a single forwarding node is successfully chosen in each direction. Then, directional broadcast is adopted at each hop in the message propagation direction until the emergency message reaches an intersection area where multi-directional broadcast is performed again, which finally enables the emergency message to cover the target area seamlessly. Analysis and simulation results show that the proposed UMBP significantly improves the performance of multi-hop broadcast in terms of one-hop delay, message propagation speed, and message reception rate.

147 citations

Journal ArticleDOI
TL;DR: In this article, a new sensing method for simultaneous measurement of seawater temperature and salinity by C-type micro-structured fiber was proposed, which can be used for double parameter measurement.
Abstract: A new sensing method for simultaneous measurement of seawater temperature and salinity by C-type micro-structured fiber was proposed. The C-type fiber structure formed by removing the outer wall of one pore from a six holes micro-structured fiber, which would bring in birefringence and broke original pattern of degeneracy. By optimizing the parameters of this fiber structure, X polarization and Y polarization of fundamental mode were separate. Therefore, it could be used for double parameter measurement. Besides, gold film coated on the surface of structure to enhance sensing sensitivity by Surface Plasmon Resonance (SPR) principle. In this study, finite element analysis method was used to analyze the spectral transmission characteristics of C-type micro-structured optical fiber. The surface of wedge-shaped defect was contacted with seawater directly to feel salinity; meanwhile, thermo-optic material filled into pores to detect the temperature of seawater. Through model analysis, it was proved that the proposed filling structure could produce two SPR loss valleys, which had different responses to temperature and salinity. Under optimized structure, maximum salinity sensitivity of 1.402 nm/‰ was obtained for X-polarization and maximum temperature sensitivity of −7.609 nm/ °C was obtained for Y polarization, which demonstrated that the designed scheme could not only solve the cross sensitivity problem of two parameters but also achieve high sensitivity. In addition, C-type micro-structured fiber is non-cascade integrated, strong stability, and flexibility in design, which has great potential for sensing applications.

147 citations


Authors

Showing all 36436 results

NameH-indexPapersCitations
Rui Zhang1512625107917
Hui-Ming Cheng147880111921
Yonggang Huang13679769290
Yang Liu1292506122380
Tao Zhang123277283866
J. R. Dahn12083266025
Terence G. Langdon117115861603
Frank L. Lewis114104560497
Xin Li114277871389
Peng Wang108167254529
David J. Hill107136457746
Jian Zhang107306469715
Xuemin Shen106122144959
Yi Zhang102181753417
Tao Li102248360947
Network Information
Related Institutions (5)
Northeastern University
58.1K papers, 1.7M citations

84% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

83% related

Tsinghua University
200.5K papers, 4.5M citations

81% related

Nanyang Technological University
112.8K papers, 3.2M citations

81% related

Tianjin University
79.9K papers, 1.2M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022906
20214,689
20204,118
20193,653
20182,878