scispace - formally typeset
Search or ask a question
Institution

Northwestern University

EducationEvanston, Illinois, United States
About: Northwestern University is a education organization based out in Evanston, Illinois, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 75430 authors who have published 188857 publications receiving 9463252 citations. The organization is also known as: Northwestern & NU.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of 122 research reports (184 independent samples, 14,900 subjects) found average r =.274 for prediction of behavioral, judgment, and physiological measures by Implicit Association Test (IAT) measures as mentioned in this paper.
Abstract: This review of 122 research reports (184 independent samples, 14,900 subjects) found average r = .274 for prediction of behavioral, judgment, and physiological measures by Implicit Association Test (IAT) measures. Parallel explicit (i.e., self-report) measures, available in 156 of these samples (13,068 subjects), also predicted effectively (average r = .361), but with much greater variability of effect size. Predictive validity of self-report was impaired for socially sensitive topics, for which impression management may distort self-report responses. For 32 samples with criterion measures involving Black-White interracial behavior, predictive validity of IAT measures significantly exceeded that of self-report measures. Both IAT and self-report measures displayed incremental validity, with each measure predicting criterion variance beyond that predicted by the other. The more highly IAT and self-report measures were intercorrelated, the greater was the predictive validity of each.

2,690 citations

Journal ArticleDOI
TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Abstract: Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation for the development of careful experiments which can be used to test the theories and exhibit new phenomena.

2,689 citations

Journal ArticleDOI
TL;DR: A systematic review of the literature regarding how activity in diverse brain regions creates and modulates the experience of acute and chronic pain states, emphasizing the contribution of various imaging techniques to emerging concepts is presented in this paper.

2,686 citations

Journal ArticleDOI
TL;DR: A new continuous reproducing kernel interpolation function which explores the attractive features of the flexible time-frequency and space-wave number localization of a window function is developed and is called the reproducingkernel particle method (RKPM).
Abstract: A new continuous reproducing kernel interpolation function which explores the attractive features of the flexible time-frequency and space-wave number localization of a window function is developed. This method is motivated by the theory of wavelets and also has the desirable attributes of the recently proposed smooth particle hydrodynamics (SPH) methods, moving least squares methods (MLSM), diffuse element methods (DEM) and element-free Galerkin methods (EFGM). The proposed method maintains the advantages of the free Lagrange or SPH methods; however, because of the addition of a correction function, it gives much more accurate results. Therefore it is called the reproducing kernel particle method (RKPM). In computer implementation RKPM is shown to be more efficient than DEM and EFGM. Moreover, if the window function is C∞, the solution and its derivatives are also C∞ in the entire domain. Theoretical analysis and numerical experiments on the 1D diffusion equation reveal the stability conditions and the effect of the dilation parameter on the unusually high convergence rates of the proposed method. Two-dimensional examples of advection-diffusion equations and compressible Euler equations are also presented together with 2D multiple-scale decompositions.

2,682 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the stability and efficiency of social and economic networks when self-interested individuals can form or sever links, and show that there does not always exist a stable network that is efficient.

2,660 citations


Authors

Showing all 76189 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Ralph B. D'Agostino2261287229636
Daniel Levy212933194778
David Miller2032573204840
Ronald M. Evans199708166722
Michael Marmot1931147170338
Robert C. Nichol187851162994
Scott M. Grundy187841231821
Stuart H. Orkin186715112182
Michael A. Strauss1851688208506
Ralph Weissleder1841160142508
Patrick O. Brown183755200985
Aaron R. Folsom1811118134044
Valentin Fuster1791462185164
Ronald C. Petersen1781091153067
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023275
20221,183
202110,513
202010,260
20199,331
20188,301