scispace - formally typeset
Search or ask a question
Institution

Northwestern University

EducationEvanston, Illinois, United States
About: Northwestern University is a education organization based out in Evanston, Illinois, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 75430 authors who have published 188857 publications receiving 9463252 citations. The organization is also known as: Northwestern & NU.


Papers
More filters
Journal ArticleDOI
Rongchao Jin1, Guosheng Wu1, Zhi Li1, Chad A. Mirkin1, George C. Schatz1 
TL;DR: A series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures are reported.
Abstract: We report a series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures. These variables include the size of the nanoparticles, the surface density of the oligonucleotides on the nanoparticles, the dielectric constant of the surrounding medium, target concentration, and the position of the nanoparticles with respect to one another within the aggregate. The experimental data may be understood in terms of a thermodynamic model that attributes the sharp melting to a cooperative mechanism that results from two key factors: the presence of multiple DNA linkers between each pair of nanoparticles and a decrease in the melting temperature as DNA strands melt due to a concomitant reduction in local salt concentration. The cooperative melting effect, originating from short-range duplex-to-duplex interactions, is independent of DNA base sequences studied and should be universal for any type of nanostructured probe that is heavily functionalized with oligonucleotides. Understanding the fundamental origins of the melting properties of DNA-linked nanoparticle aggregates (or monolayers) is of paramount importance because these properties directly impact one's ability to formulate high sensitivity and selectivity DNA detection systems and construct materials from these novel nanoparticle materials.

1,420 citations

Journal ArticleDOI
TL;DR: It is reported that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway.
Abstract: Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.

1,415 citations

Journal ArticleDOI
TL;DR: In this paper, a qualitative discussion of electron transfer, its time and distance scales, energy curves, and basic parabolic energy models are introduced to define the electron transfer process, and some of the important, challenging, and problematic issues in contemporary electron transfer research are discussed.
Abstract: This is an overview of some of the important, challenging, and problematic issues in contemporary electron transfer research. After a qualitative discussion of electron transfer, its time and distance scales, energy curves, and basic parabolic energy models are introduced to define the electron transfer process. Application of transition state theory leads to the standard Marcus formulation of electron transfer rate constants. Electron transfer in solution is coupled to solvent polarization effects, and relaxation processes can contribute to and even control electron transfer. The inverted region, in which electron transfer rate constants decrease with increasing exoergicity, is one of the most striking phenomena in electron transfer chemistry. It is predicted by both semiclassical and quantum mechanical models, with the latter appropriate if there are coupled high- or medium-frequency vibrations. The intramolecular reorganizational energy has different contributions from different vibrational modes, whic...

1,413 citations

Journal ArticleDOI
TL;DR: In this paper, the authors construct a pair of linear examples to study the collapse time of a fixed exchange-rate regime and derive a stochastic model for the same problem.

1,412 citations


Authors

Showing all 76189 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Ralph B. D'Agostino2261287229636
Daniel Levy212933194778
David Miller2032573204840
Ronald M. Evans199708166722
Michael Marmot1931147170338
Robert C. Nichol187851162994
Scott M. Grundy187841231821
Stuart H. Orkin186715112182
Michael A. Strauss1851688208506
Ralph Weissleder1841160142508
Patrick O. Brown183755200985
Aaron R. Folsom1811118134044
Valentin Fuster1791462185164
Ronald C. Petersen1781091153067
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

Harvard University
530.3K papers, 38.1M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023275
20221,183
202110,513
202010,260
20199,331
20188,301