scispace - formally typeset
Search or ask a question
Institution

Norwegian University of Life Sciences

EducationÅs, Norway
About: Norwegian University of Life Sciences is a education organization based out in Ås, Norway. It is known for research contribution in the topics: Population & Salmo. The organization has 4935 authors who have published 13539 publications receiving 442298 citations. The organization is also known as: NMBU & Norges miljø- og biovitenskapelige universitet.
Topics: Population, Salmo, Gene, Soil water, Species richness


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements.
Abstract: Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.

3,380 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
TL;DR: This work analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types, and found a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height.
Abstract: Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

1,750 citations

Journal ArticleDOI
TL;DR: This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products.

1,560 citations


Authors

Showing all 5007 results

NameH-indexPapersCitations
Andrew Collins10068440634
Anthony P. Farrell9249529992
Peter Heutink9236543441
Douglas R. Tocher9039029364
Christopher J. Secombes8748024376
Tim A. McAllister8586232409
Ben J. Hayes8034627872
Trygve Helgaker7937730013
Nigel G. Yoccoz7834524044
Vincent G. H. Eijsink7633221181
Ingolf F. Nes7623622505
Daniel Gianola7543522214
Jon E. Swenson7527017537
Jason F. Shogren7452721003
Robert E. Page7321317388
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

93% related

University of Georgia
93.6K papers, 3.7M citations

89% related

Colorado State University
69K papers, 2.7M citations

89% related

Ghent University
111K papers, 3.7M citations

88% related

Oregon State University
64K papers, 2.6M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022109
20211,050
20201,079
2019924
2018902