scispace - formally typeset
Search or ask a question
Institution

Novartis

CompanyBasel, Switzerland
About: Novartis is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Alkyl & Population. The organization has 41930 authors who have published 50566 publications receiving 1978996 citations. The organization is also known as: Novartis International AG.


Papers
More filters
Journal ArticleDOI
TL;DR: STI571 is well tolerated and has significant antileukemic activity in patients with CML in whom treatment with interferon alfa had failed and demonstrates the potential for the development of anticancer drugs based on the specific molecular abnormality present in a human cancer.
Abstract: Background BCR-ABL is a constitutively activated tyrosine kinase that causes chronic myeloid leukemia (CML). Since tyrosine kinase activity is essential to the transforming function of BCR-ABL, an inhibitor of the kinase could be an effective treatment for CML. Methods We conducted a phase 1, dose-escalating trial of STI571 (formerly known as CGP 57148B), a specific inhibitor of the BCR-ABL tyrosine kinase. STI571 was administered orally to 83 patients with CML in the chronic phase in whom treatment with interferon alfa had failed. Patients were successively assigned to 1 of 14 doses ranging from 25 to 1000 mg per day. Results Adverse effects of STI571 were minimal; the most common were nausea, myalgias, edema, and diarrhea. A maximal tolerated dose was not identified. Complete hematologic responses were observed in 53 of 54 patients treated with daily doses of 300 mg or more and typically occurred in the first four weeks of therapy. Of the 54 patients treated with doses of 300 mg or more, cytogenetic res...

5,037 citations

Journal ArticleDOI
Ed S. Lein1, Michael Hawrylycz1, Nancy Ao2, Mikael Ayres1, Amy Bensinger1, Amy Bernard1, Andrew F. Boe1, Mark S. Boguski1, Mark S. Boguski3, Kevin S. Brockway1, Emi J. Byrnes1, Lin Chen1, Li Chen2, Tsuey-Ming Chen2, Mei Chi Chin1, Jimmy Chong1, Brian E. Crook1, Aneta Czaplinska2, Chinh Dang1, Suvro Datta1, Nick Dee1, Aimee L. Desaki1, Tsega Desta1, Ellen Diep1, Tim A. Dolbeare1, Matthew J. Donelan1, Hong-Wei Dong1, Jennifer G. Dougherty1, Ben J. Duncan1, Amanda Ebbert1, Gregor Eichele4, Lili K. Estin1, Casey Faber1, Benjamin A.C. Facer1, Rick Fields2, Shanna R. Fischer1, Tim P. Fliss1, Cliff Frensley1, Sabrina N. Gates1, Katie J. Glattfelder1, Kevin R. Halverson1, Matthew R. Hart1, John G. Hohmann1, Maureen P. Howell1, Darren P. Jeung1, Rebecca A. Johnson1, Patrick T. Karr1, Reena Kawal1, Jolene Kidney1, Rachel H. Knapik1, Chihchau L. Kuan1, James H. Lake1, Annabel R. Laramee1, Kirk D. Larsen1, Christopher Lau1, Tracy Lemon1, Agnes J. Liang2, Ying Liu2, Lon T. Luong1, Jesse Michaels1, Judith J. Morgan1, Rebecca J. Morgan1, Marty Mortrud1, Nerick Mosqueda1, Lydia Ng1, Randy Ng1, Geralyn J. Orta1, Caroline C. Overly1, Tu H. Pak1, Sheana Parry1, Sayan Dev Pathak1, Owen C. Pearson1, Ralph B. Puchalski1, Zackery L. Riley1, Hannah R. Rockett1, Stephen A. Rowland1, Joshua J. Royall1, Marcos J. Ruiz2, Nadia R. Sarno1, Katherine Schaffnit1, Nadiya V. Shapovalova1, Taz Sivisay1, Clifford R. Slaughterbeck1, Simon Smith1, Kimberly A. Smith1, Bryan I. Smith1, Andy J. Sodt1, Nick N. Stewart1, Kenda-Ruth Stumpf1, Susan M. Sunkin1, Madhavi Sutram1, Angelene Tam2, Carey D. Teemer1, Christina Thaller2, Carol L. Thompson1, Lee R. Varnam1, Axel Visel4, Axel Visel5, Ray M. Whitlock1, Paul Wohnoutka1, Crissa K. Wolkey1, Victoria Y. Wong1, Matthew J.A. Wood2, Murat B. Yaylaoglu2, Rob Young1, Brian L. Youngstrom1, Xu Feng Yuan1, Bin Zhang2, Theresa A. Zwingman1, Allan R. Jones1 
11 Jan 2007-Nature
TL;DR: An anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain is described, providing an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Abstract: Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.

4,944 citations

Journal ArticleDOI
TL;DR: LCZ696 was superior to enalapril in reducing the risks of death and of hospitalization for heart failure and decreased the symptoms and physical limitations of heart failure.
Abstract: Background We compared the angiotensin receptor–neprilysin inhibitor LCZ696 with enalapril in patients who had heart failure with a reduced ejection fraction. In previous studies, enalapril improved survival in such patients. Methods In this double-blind trial, we randomly assigned 8442 patients with class II, III, or IV heart failure and an ejection fraction of 40% or less to receive either LCZ696 (at a dose of 200 mg twice daily) or enalapril (at a dose of 10 mg twice daily), in addition to recommended therapy. The primary outcome was a composite of death from cardiovascular causes or hospitalization for heart failure, but the trial was designed to detect a difference in the rates of death from cardiovascular causes. Results The trial was stopped early, according to prespecified rules, after a median followup of 27 months, because the boundary for an overwhelming benefit with LCZ696 had been crossed. At the time of study closure, the primary outcome had occurred in 914 patients (21.8%) in the LCZ696 group and 1117 patients (26.5%) in the enalapril group (hazard ratio in the LCZ696 group, 0.80; 95% confidence interval [CI], 0.73 to 0.87; P<0.001). A total of 711 patients (17.0%) receiving LCZ696 and 835 patients (19.8%) receiving enalapril died (hazard ratio for death from any cause, 0.84; 95% CI, 0.76 to 0.93; P<0.001); of these patients, 558 (13.3%) and 693 (16.5%), respectively, died from cardiovascular causes (hazard ratio, 0.80; 95% CI, 0.71 to 0.89; P<0.001). As compared with enalapril, LCZ696 also reduced the risk of hospitalization for heart failure by 21% (P<0.001) and decreased the symptoms and physical limitations of heart failure (P = 0.001). The LCZ696 group had higher proportions of patients with hypotension and nonserious angioedema but lower proportions with renal impairment, hyperkalemia, and cough than the enalapril group. Conclusions LCZ696 was superior to enalapril in reducing the risks of death and of hospitalization for heart failure. (Funded by Novartis; PARADIGM-HF ClinicalTrials.gov number, NCT01035255.)

4,727 citations

Journal ArticleDOI
TL;DR: The expert panel reached a consensus that the optimal version of the Comet assay for identifying agents with genotoxic activity was the alkaline (pH > 13) versions of the assay developed by Singh et al.
Abstract: Atthe International Workshop on Genotoxicity Test Procedures (IWGTP) held in Washington, DC, March 25-26, 1999, an expert panel met to develop guidelines for the use of the single-cell gel (SCG)/Comet assay in genetic toxicology. The expert panel reached a consensus that the optimal version of the Comet assay for identifying agents with genotoxic activity was the alkaline (pH > 13) version of the assay developed by Singh et al. [1988]. The pH > 13 version is capable of detecting DNA single-strand breaks (SSB), alkali-labile sites (ALS), DNA-DNA/DNA-protein cross-linking, and SSB associated with incomplete excision repair sites. Relative to other genotoxicity tests, the advantages of the SCG assay include its demonstrated sensitivity for detecting low levels of DNA damage, the requirement for small numbers of cells per sample, its flexibility, its low costs, its ease of application, and the short time needed to complete a study. The expert panel decided that no single version of the alkaline (pH > 13) Comet assay was clearly superior. However, critical technical steps within the assay were discussed and guidelines developed for preparing slides with agarose gels, lysing cells to liberate DNA, exposing the liberated DNA to alkali to produce single-stranded DNA and to express ALS as SSB, electrophoresing the DNA using pH > 13 alkaline conditions, alkali neutralization, DNA staining, comet visualization, and data collection. Based on the current state of knowledge, the expert panel developed guidelines for conducting in vitro or in vivo Comet assays. The goal of the expert panel was to identify minimal standards for obtaining reproducible and reliable Comet data deemed suitable for regulatory submission. The expert panel used the current Organization for Economic Co-operation and Development (OECD) guidelines for in vitro and in vivo genetic toxicological studies as guides during the development of the corresponding in vitro and in vivo SCG assay guidelines. Guideline topics considered included initial considerations, principles of the test method, description of the test method, procedure, results, data analysis and reporting. Special consideration was given by the expert panel to the potential adverse effect of DNA degradation associated with cytotoxicity on the interpretation of Comet assay results. The expert panel also discussed related SCG methodologies that might be useful in the interpretation of positive Comet data. The related methodologies discussed included: (1) the use of different pH conditions during electrophoreses to discriminate between DNA strand breaks and ALS; (2) the use of repair enzymes or antibodies to detect specific classes of DNA damage; (3) the use of a neutral diffusion assay to identify apoptotic/necrotic cells; and (4) the use of the acellular SCG assay to evaluate the ability of a test substance to interact directly with DNA. The alkaline (pH > 13) Comet assay guidelines developed by the expert panel represent a work in progress. Additional information is needed before the assay can be critically evaluated for its utility in genetic toxicology. The information needed includes comprehensive data on the different sources of variability (e.g., cell to cell, gel to gel, run to run, culture to culture, animal to animal, experiment to experiment) intrinsic to the alkaline (pH > 3) SCG assay, the generation of a large database based on in vitro and in vivo testing using these guidelines, and the results of appropriately designed multilaboratory international validation studies.

4,583 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations


Authors

Showing all 41972 results

NameH-indexPapersCitations
Irving L. Weissman2011141172504
Peter J. Barnes1941530166618
Paul G. Richardson1831533155912
Kenneth C. Anderson1781138126072
Jie Zhang1784857221720
Lei Jiang1702244135205
Marc A. Pfeffer166765133043
Jorge E. Cortes1632784124154
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Bruce D. Walker15577986020
Timothy P. Hughes14583191357
Kurt Wüthrich143739103253
Leonard Guarente14335280169
Christopher D.M. Fletcher13867482484
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

97% related

Merck & Co.
48K papers, 1.9M citations

97% related

GlaxoSmithKline
21.1K papers, 1.1M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

96% related

Genentech
17.1K papers, 1.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202285
20211,321
20201,377
20191,376
20181,456