scispace - formally typeset
Search or ask a question
Institution

Novartis

CompanyBasel, Switzerland
About: Novartis is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Alkyl & Population. The organization has 41930 authors who have published 50566 publications receiving 1978996 citations. The organization is also known as: Novartis International AG.
Topics: Alkyl, Population, Alkoxy group, Receptor, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: Rivastigmine 6-12 mg daily produces statistically and clinically significant behavioural effects in patients with Lewy-body dementia, and seems safe and well tolerated if titrated individually.

1,060 citations

Journal ArticleDOI
TL;DR: The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.
Abstract: Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.

1,044 citations

Journal ArticleDOI
TL;DR: The results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities and could potentially improve preclinical evaluation of treatmentmodalities and enhance the ability to predict clinical trial responses.
Abstract: Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

1,043 citations

Journal ArticleDOI
TL;DR: Targeting of the statin-binding site of LFA-1 could be used to treat diseases such as psoriasis, rheumatoid arthritis, ischemia/reperfusion injury and transplant rejection.
Abstract: The beta2 integrin leukocyte function antigen-1 (LFA-1) has an important role in the pathophysiology of inflammatory and autoimmune diseases. Here we report that statin compounds commonly used for the treatment of hypercholesterolemia selectively blocked LFA-1-mediated adhesion and costimulation of lymphocytes. This effect was unrelated to the statins' inhibition of 3-hydroxy-3-methylglutaryl coenzyme-A reductase; instead it occurred via binding to a novel allosteric site within LFA-1. Subsequent optimization of the statins for LFA-1 binding resulted in potent, selective and orally active LFA-1 inhibitors that suppress the inflammatory response in a murine model of peritonitis. Targeting of the statin-binding site of LFA-1 could be used to treat diseases such as psoriasis, rheumatoid arthritis, ischemia/reperfusion injury and transplant rejection.

1,041 citations

Journal ArticleDOI
Gary A. Churchill, David C. Airey1, Hooman Allayee2, Joe M. Angel3, Alan D. Attie4, Jackson Beatty5, Willam D. Beavis6, John K. Belknap7, Beth Bennett8, Wade H. Berrettini9, André Bleich10, Molly A. Bogue, Karl W. Broman11, Kari J. Buck12, Edward S. Buckler13, Margit Burmeister14, Elissa J. Chesler15, James M. Cheverud16, Steven J. Clapcote17, Melloni N. Cook18, Roger D. Cox19, John C. Crabbe12, Wim E. Crusio20, Ariel Darvasi21, Christian F. Deschepper22, Rebecca W. Doerge23, Charles R. Farber24, Jiri Forejt25, Daniel Gaile26, Steven J. Garlow27, Hartmut Geiger28, Howard K. Gershenfeld29, Terry Gordon30, Jing Gu15, Weikuan Gu15, Gerald de Haan31, Nancy L. Hayes32, Craig Heller33, Heinz Himmelbauer34, Robert Hitzemann12, Kent W. Hunter35, Hui-Chen Hsu36, Fuad A. Iraqi37, Boris Ivandic38, Howard J. Jacob39, Ritsert C. Jansen31, Karl J. Jepsen40, Dabney K. Johnson41, Thomas E. Johnson8, Gerd Kempermann42, Christina Kendziorski4, Malak Kotb15, R. Frank Kooy43, Bastien Llamas22, Frank Lammert44, J. M. Lassalle45, Pedro R. Lowenstein5, Lu Lu15, Aldons J. Lusis5, Kenneth F. Manly15, Ralph S. Marcucio46, Doug Matthews18, Juan F. Medrano24, Darla R. Miller41, Guy Mittleman18, Beverly A. Mock35, Jeffrey S. Mogil47, Xavier Montagutelli48, Grant Morahan49, David G. Morris50, Richard Mott51, Joseph H. Nadeau52, Hiroki Nagase53, Richard S. Nowakowski32, Bruce F. O'Hara54, Alexander V. Osadchuk, Grier P. Page36, Beverly Paigen, Kenneth Paigen, Abraham A. Palmer, Huei Ju Pan, Leena Peltonen-Palotie5, Leena Peltonen-Palotie55, Jeremy L. Peirce15, Daniel Pomp56, Michal Pravenec25, Daniel R. Prows28, Zonghua Qi1, Roger H. Reeves11, John C. Roder17, Glenn D. Rosen57, Eric E. Schadt58, Leonard C. Schalkwyk59, Ze'ev Seltzer17, Kazuhiro Shimomura60, Siming Shou61, Mikko J. Sillanpää55, Linda D. Siracusa62, Hans-Willem Snoeck40, Jimmy L. Spearow24, Karen L. Svenson, Lisa M. Tarantino63, David W. Threadgill64, Linda A. Toth65, William Valdar51, Fernando Pardo-Manuel de Villena64, Craig H Warden24, Steve Whatley59, Robert W. Williams15, Tom Wiltshire63, Nengjun Yi36, Dabao Zhang66, Min Zhang13, Fei Zou64 
Vanderbilt University1, University of Southern California2, University of Texas MD Anderson Cancer Center3, University of Wisconsin-Madison4, University of California, Los Angeles5, National Center for Genome Resources6, Portland VA Medical Center7, University of Colorado Boulder8, University of Pennsylvania9, Hannover Medical School10, Johns Hopkins University11, Oregon Health & Science University12, Cornell University13, University of Michigan14, University of Tennessee Health Science Center15, Washington University in St. Louis16, University of Toronto17, University of Memphis18, Medical Research Council19, University of Massachusetts Medical School20, Hebrew University of Jerusalem21, Université de Montréal22, Purdue University23, University of California, Davis24, Academy of Sciences of the Czech Republic25, University at Buffalo26, Emory University27, University of Cincinnati28, University of Texas Southwestern Medical Center29, New York University30, University of Groningen31, Rutgers University32, Stanford University33, Max Planck Society34, National Institutes of Health35, University of Alabama at Birmingham36, International Livestock Research Institute37, Heidelberg University38, Medical College of Wisconsin39, Icahn School of Medicine at Mount Sinai40, Oak Ridge National Laboratory41, Charité42, University of Antwerp43, RWTH Aachen University44, Paul Sabatier University45, University of California, San Francisco46, McGill University47, Pasteur Institute48, University of Western Australia49, Yale University50, University of Oxford51, Case Western Reserve University52, Roswell Park Cancer Institute53, University of Kentucky54, University of Helsinki55, University of Nebraska–Lincoln56, Harvard University57, Merck & Co.58, King's College London59, Northwestern University60, Shriners Hospitals for Children61, Thomas Jefferson University62, Novartis63, University of North Carolina at Chapel Hill64, Southern Illinois University Carbondale65, University of Rochester66
TL;DR: The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way the authors approach human health and disease.
Abstract: The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.

1,040 citations


Authors

Showing all 41972 results

NameH-indexPapersCitations
Irving L. Weissman2011141172504
Peter J. Barnes1941530166618
Paul G. Richardson1831533155912
Kenneth C. Anderson1781138126072
Jie Zhang1784857221720
Lei Jiang1702244135205
Marc A. Pfeffer166765133043
Jorge E. Cortes1632784124154
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Bruce D. Walker15577986020
Timothy P. Hughes14583191357
Kurt Wüthrich143739103253
Leonard Guarente14335280169
Christopher D.M. Fletcher13867482484
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

97% related

Merck & Co.
48K papers, 1.9M citations

97% related

GlaxoSmithKline
21.1K papers, 1.1M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

96% related

Genentech
17.1K papers, 1.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202285
20211,321
20201,377
20191,376
20181,456