scispace - formally typeset
Search or ask a question
Institution

Novartis

CompanyBasel, Switzerland
About: Novartis is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Alkyl & Population. The organization has 41930 authors who have published 50566 publications receiving 1978996 citations. The organization is also known as: Novartis International AG.
Topics: Alkyl, Population, Alkoxy group, Receptor, Cancer


Papers
More filters
Journal ArticleDOI
08 Mar 2012-Nature
TL;DR: It is shown that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances, demonstrating that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.
Abstract: Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction. Large transmembrane proteins of the Piezo family assemble as tetramers to form a new class of ion channel that can be activated by mechanical force. Many tissues are able to detect and respond to mechanical forces, and this mechanical sensitivity has been implicated in many biological processes and diseases, including touch, pain, deafness and hypertension. The conversion of mechanical force into biological signals, or 'mechanotransduction', is thought to involve specialized cation channels. In a pair of papers, Ardem Patapoutian and colleagues establish that the large transmembrane proteins of the 'Piezo' family — conserved from animals to plants and protozoa — are among the long-sought-after mechanically activated ion channels. Coste et al. show that the Drosophila melanogaster Piezo protein induces mechanically activated cationic currents in human embryonic kidney cells, establishing functional conservation. Comparison of the mechanically activated currents induced by mouse and fly Piezos reveals ion-channel activities with unique pore properties, suggesting that Piezos are bona fide ion channels. Kim et al. show that D. melanogaster Piezo is essential for sensing mechanical pain in fruitflies, giving the first demonstration that Piezos are physiologically relevant mechanosensors in vivo.

765 citations

Journal ArticleDOI
12 Mar 2009-Leukemia
TL;DR: During the sixth year of study treatment, there were no reports of disease progression to accelerated phase (AP) or blast crisis (BC), and the toxicity profile was unchanged.
Abstract: Imatinib mesylate is considered standard of care for first-line treatment of chronic phase chronic myeloid leukemia (CML-CP). In the phase III, randomized, open-label International Randomized Study of Interferon vs STI571 (IRIS) trial, previously untreated CML-CP patients were randomized to imatinib (n=553) or interferon-alpha (IFN) plus cytarabine (n=553). This 6-year update focuses on patients randomized to receive imatinib as first-line therapy for newly diagnosed CML-CP. During the sixth year of study treatment, there were no reports of disease progression to accelerated phase (AP) or blast crisis (BC). The toxicity profile was unchanged. The cumulative best complete cytogenetic response (CCyR) rate was 82%; 63% of all patients randomized to receive imatinib and still on study treatment showed CCyR at last assessment. The estimated event-free survival at 6 years was 83%, and the estimated rate of freedom from progression to AP and BC was 93%. The estimated overall survival was 88% -- or 95% when only CML-related deaths were considered. This 6-year update of IRIS underscores the efficacy and safety of imatinib as first-line therapy for patients with CML.

762 citations

Journal ArticleDOI
10 May 2012-Nature
TL;DR: It is shown that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling, and R-spondin mimics ZNRF3 inhibition by increasing the membrane level of WNT receptors.
Abstract: R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.

762 citations

Journal ArticleDOI
TL;DR: It is proposed that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.
Abstract: A hallmark of Huntington's disease is the accumulation of polyglutamine-expanded huntingtin (htt) protein in striatal neurons. The removal of cytosolic mutant htt is known to be mediated by the macroautophagy-lysosomal system. Here the authors specifically identify the defective step of autophagy in Huntington's models, in which autophagosomes fail to recognize mutant htt as a cargo destined for degradation.

762 citations

Journal ArticleDOI
TL;DR: Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.
Abstract: Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi-protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill-characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro We show that the N-terminal fragment of caspase-1-cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N-terminal fragment of caspase-1-cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome-inserted GSDMD at nanometer resolution by cryo-electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.

762 citations


Authors

Showing all 41972 results

NameH-indexPapersCitations
Irving L. Weissman2011141172504
Peter J. Barnes1941530166618
Paul G. Richardson1831533155912
Kenneth C. Anderson1781138126072
Jie Zhang1784857221720
Lei Jiang1702244135205
Marc A. Pfeffer166765133043
Jorge E. Cortes1632784124154
Ian A. Wilson15897198221
Peter G. Schultz15689389716
Bruce D. Walker15577986020
Timothy P. Hughes14583191357
Kurt Wüthrich143739103253
Leonard Guarente14335280169
Christopher D.M. Fletcher13867482484
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

97% related

Merck & Co.
48K papers, 1.9M citations

97% related

GlaxoSmithKline
21.1K papers, 1.1M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

96% related

Genentech
17.1K papers, 1.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202285
20211,321
20201,377
20191,376
20181,456