scispace - formally typeset
Search or ask a question
Institution

Novozymes

CompanyCopenhagen, Denmark
About: Novozymes is a company organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Nucleic acid & Polynucleotide. The organization has 2506 authors who have published 2828 publications receiving 89266 citations. The organization is also known as: Novo Enzymes A/S & Novozymes A/S.


Papers
More filters
Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
TL;DR: The development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used are studied.

1,319 citations

Journal ArticleDOI
TL;DR: In this article, a method based on the reaction of primary amino groups with o-phthaldialdehyde (OPA) was proposed to determine the degree of hydrolysis.
Abstract: When producing hydrolyzed proteins, it is important to determine the degree of hydrolysis (DH). The trinitro-benzene-sulfonic acid (TNBS) method is well established with regard to enzymatic hydrolysis. However, this method is laborious, cannot be used to follow a hydrolysis reaction continuously, and includes hazardous and unstable chemicals. This paper describes a method based on the reaction of primary amino groups with o- phthaldialdehyde (OPA). The conclusion is that the OPA method of analyzing the DH of protein hydrolyses is more accurate, is easier and faster to carry out, has a broader application range, and is environmentally safer than the TNBS method.

1,159 citations

Journal ArticleDOI
TL;DR: This work assembled 89 scaffolds to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models, providing a roadmap for constructing enhanced T.Reesei strains for industrial applications such as biofuel production.
Abstract: Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.

1,085 citations

Journal ArticleDOI
TL;DR: The sequenced genome of Phanerochaete chrysosporium strain RP78 reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay, and provides a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching.
Abstract: White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.

883 citations


Authors

Showing all 2507 results

NameH-indexPapersCitations
Jens Nielsen1491752104005
Gary K. Schoolnik8123327782
Lubbert Dijkhuizen7542421761
Bauke W. Dijkstra7225619487
Michel Vert6933317899
Henning Langberg6024211999
Harinderjit Gill5931912978
John M. Woodley5842013426
Lei Cai5737416689
Anette Müllertz5727410319
Peter J. Punt521548846
Svein Jarle Horn511239511
Martin Hofrichter501587387
Eva Stoger491278367
Luciano Saso453257672
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

85% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

85% related

East China University of Science and Technology
36.4K papers, 763.1K citations

84% related

National Research Council
76K papers, 2.4M citations

84% related

Leibniz Association
35.6K papers, 1M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20229
202181
202070
201998
2018102
2017135