scispace - formally typeset
Search or ask a question

Showing papers by "Oak Ridge National Laboratory published in 2008"


Journal ArticleDOI
TL;DR: A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility.
Abstract: A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ∼$1,000 in ∼24 h.

2,512 citations


Journal ArticleDOI
TL;DR: It is argued that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound.
Abstract: We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. This resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.

1,952 citations


Journal ArticleDOI
TL;DR: This article reviews the progress made in CO2 separation and capture research and engineering and various technologies, such as absorption, adsorption, and membrane separation are thoroughly discussed.
Abstract: This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.

1,899 citations


Journal ArticleDOI
TL;DR: Methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines are developed.
Abstract: Porous carbon materials are of interest in many applications because of their high surface area and physicochemical properties. Conventional syntheses can only produce randomly porous materials, with little control over the pore-size distributions, let alone mesostructures. Recent breakthroughs in the preparation of other porous materials have resulted in the development of methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines. Current syntheses can be categorized as either hard-template or soft-template methods. Both are examined in this Review along with procedures for surface functionalization of the carbon materials obtained.

1,716 citations


Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: The role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds of rare-earth iron-based oxide systems was investigated in this paper.
Abstract: Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-T(c)) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at approximately 137 K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-T(c) copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

1,441 citations


Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations


Journal ArticleDOI
13 Mar 2008-Nature
TL;DR: It is demonstrated that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.
Abstract: About a quarter of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for nitrogen must exist in the landscape. Data from nitrogen stable isotope tracer experiments across 72 streams suggests that the total uptake of nitrate is related to ecosystem photosynthesis, and that denitrification is related to ecosystem respiration. A stream network model demonstrates that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing1,2 and terrestrial ecosystems are becoming increasingly nitrogen-saturated3, causing more bioavailable nitrogen to enter groundwater and surface waters4,5,6. Large-scale nitrogen budgets show that an average of about 20–25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins7,8, indicating that substantial sinks for nitrogen must exist in the landscape9. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification6,10,11. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.

1,193 citations


Journal ArticleDOI
TL;DR: For cellulosic ethanol to become a reality, biotechnological solutions should focus on optimizing the conversion of biomass to sugars.
Abstract: For cellulosic ethanol to become a reality, biotechnological solutions should focus on optimizing the conversion of biomass to sugars.

1,097 citations


Journal ArticleDOI
TL;DR: LaFeAs(O,F) is in a unique class of high T(c) superconductors: high N(E(F))) ionic metals near magnetism.
Abstract: Density functional studies of 26 K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, $N({E}_{F})$, and modest phonon frequencies relative to ${T}_{c}$. The high $N({E}_{F})$ leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by the doping level. Thus LaFeAs(O,F) is in a unique class of high ${T}_{c}$ superconductors: high $N({E}_{F})$ ionic metals near magnetism.

970 citations


Journal ArticleDOI
06 Mar 2008-Nature
TL;DR: The predicted gene inventory of the L. bicolor genome points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi, providing an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
Abstract: Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.

946 citations


Journal ArticleDOI
TL;DR: This is the first example of superconductivity induced by electron doping in this family of materials, and in contrast with cuprates, the BaFe2As2 system appears to tolerate considerable disorder in the FeAs planes.
Abstract: Here we report bulk superconductivity in ${\mathrm{BaFe}}_{1.8}{\mathrm{Co}}_{0.2}{\mathrm{As}}_{2}$ single crystals below ${T}_{c}=22\text{ }\text{ }\mathrm{K}$, as demonstrated by resistivity, magnetic susceptibility, and specific heat data. Hall data indicate that the dominant carriers are electrons, as expected from simple chemical reasoning. This is the first example of superconductivity induced by electron doping in this family of materials. In contrast with cuprates, the ${\mathrm{BaFe}}_{2}{\mathrm{As}}_{2}$ system appears to tolerate considerable disorder in the FeAs planes. First principles calculations for ${\mathrm{BaFe}}_{1.8}{\mathrm{Co}}_{0.2}{\mathrm{As}}_{2}$ indicate the interband scattering due to Co is weak.

Journal ArticleDOI
01 Oct 2008-Elements
TL;DR: Carbon dioxide capture and sequestration (CCS) in deep geological formations has recently emerged as an important option for reducing greenhouse emissions as discussed by the authors, and if CCS is implemented on the scale needed to make noticeable reductions in atmospheric CO2, a billion metric tons or more must be sequestered annually, a 250 fold increase over the amount sequestered today.
Abstract: Carbon dioxide capture and sequestration (CCS) in deep geological formations has recently emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed to make noticeable reductions in atmospheric CO2, a billion metric tons or more must be sequestered annually—a 250 fold increase over the amount sequestered today. Securing such a large volume will require a solid scientific foundation defining the coupled hydrologic-geochemical-geomechanical processes that govern the long-term fate of CO2 in the subsurface. Also needed are methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, approaches to ensure safe operation, monitoring technology, remediation methods, regulatory overview, and an institutional approach for managing long-term liability.

Journal ArticleDOI
01 Aug 2008-Science
TL;DR: It is proposed that the atomic reconstruction at the interface between highly dissimilar structures (such as fluorite and perovskite) provides both a large number of carriers and a high-mobility plane, yielding colossal values of the ionic conductivity.
Abstract: The search for electrolyte materials with high oxygen conductivities is a key step toward reducing the operation temperature of fuel cells, which is currently above 700 degrees C. We report a high lateral ionic conductivity, showing up to eight orders of magnitude enhancement near room temperature, in yttria-stabilized zirconia (YSZ)/strontium titanate epitaxial heterostructures. The enhancement of the conductivity is observed, along with a YSZ layer thickness-independent conductance, showing that it is an interface process. We propose that the atomic reconstruction at the interface between highly dissimilar structures (such as fluorite and perovskite) provides both a large number of carriers and a high-mobility plane, yielding colossal values of the ionic conductivity.

Journal ArticleDOI
TL;DR: In this article, density functional calculations of the electronic structure, Fermi surface, phonon spectrum, magnetism, and electron-phonon coupling for the superconducting phase FeSe, as well as the related compounds FeS and FeTe were performed.
Abstract: We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum, magnetism, and electron-phonon coupling for the superconducting phase FeSe, as well as the related compounds FeS and FeTe. We find that the Fermi-surface structure of these compounds is very similar to that of the Fe-As based superconductors, with cylindrical electron sections at the zone corner, cylindrical hole surface sections, and depending on the compound, other small hole sections at the zone center. As in the Fe-As based materials, these surfaces are separated by a two-dimensional nesting vector at $(\ensuremath{\pi},\ensuremath{\pi})$. The density of states, nesting, and Fermi-surface size increase, going from FeSe to FeTe. Both FeSe and FeTe show spin-density wave (SDW) ground states, while FeS is close to instability. In a scenario where superconductivity is mediated by spin fluctuations at the SDW nesting vector, the strongest superconductor in this series would be doped FeTe.

Journal ArticleDOI
TL;DR: In this article, a new internal conversion coefficient database, BrIcc, is developed which integrates a number of tabulations on internal conversion electron (ICC) and electron-positron pair conversion coefficients (IPC), as well as Ω (E 0 ) electronic factors.
Abstract: A new internal conversion coefficient database, BrIcc has been developed which integrates a number of tabulations on internal conversion electron (ICC) and electron–positron pair conversion coefficients (IPC), as well as Ω ( E 0 ) electronic factors. A critical review of general formulae and procedures to evaluate theoretical ICC and IPC values are presented, including the treatment of uncertainties in transition energy and mixing ratio in accordance with the Evaluated Nuclear Structure Data File. The default ICC table, based on the Dirac–Fock calculations using the so called “Frozen Orbital” approximation, takes into account the effect of atomic vacancies created in the conversion process. The table has been calculated for all atomic shells and to cover transition energies of 1–6000 keV and atomic numbers of Z = 5 –110. The software tools presented here are well suited for basic nuclear structure research and for a range of applications.

Journal ArticleDOI
TL;DR: Comparison of the structural evolution of CeFeAsO(1-x)F(x) with other Fe-based superconductors suggests that the structural perfection of the Fe-As tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.
Abstract: According to a neutron-scattering study of the structural and magnetic properties of the pnictide CeFeAsO1−xFx, the phase diagram of this material shows considerable similarities with the high-Tc cuprate superconductors. These results are an important addition to the effort to find out where superconductivity in these iron–arsenic alloys arises.

Journal ArticleDOI
TL;DR: This work proposes a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of anElectric double-cylinder capacitor for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinders capacitor (EWCC) for micropores (< 2 nm port size).
Abstract: The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.

Journal ArticleDOI
TL;DR: A heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor, is proposed and may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments.
Abstract: Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime ( 50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

Journal ArticleDOI
TL;DR: In this article, the authors compare the rapid prefreeze phenological advancement caused by unusually warm conditions with the dramatic postfreeze setback, and report complicated patterns of freeze damage to plants.
Abstract: Plant ecologists have long been concerned with a seemingly paradoxical scenario in the relationship between plant growth and climate change: warming may actually increase the risk of plant frost damage. The underlying hypothesis is that mild winters and warm, early springs, which are expected to occur as the climate warms, may induce premature plant development, resulting in exposure of vulnerable plant tissues and organs to subsequent late-season frosts. The 2007 spring freeze in the eastern United States provides an excellent opportunity to evaluate this hypothesis and assess its large-scale consequences. In this article, we contrast the rapid prefreeze phenological advancement caused by unusually warm conditions with the dramatic postfreeze setback, and report complicated patterns of freeze damage to plants. The widespread devastation of crops and natural vegetation occasioned by this event demonstrates the need to consider large fluctuations in spring temperatures a real threat to terrestrial ecosystem structure and functioning in a warming climate.

Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: In this article, the authors report very high-field resistance measurements of LaFeAsO0.89F0.11 up to 45 T, which show a remarkable enhancement of the upper critical field Bc2 as compared to values expected from the slopes dBc2/dT ≈ 2 T/K near Tc, particularly at low temperatures where the deduced Bc 2(0) ≈ 63-65 T exceeds the paramagnetic limit.
Abstract: The synthesis of the novel superconductor LaFeAsO0.89F0.11 with transition temperature Tc ∼ 26 K has been quickly followed by reports of even higher Tcs. These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides, because many features of these materials set them apart from other superconductors. Hunte et al. report very high-field resistance measurements of LaFeAsO0.89F0.11 up to 45 T, which show a remarkable enhancement of the upper critical field Bc2 as compared to values expected from the slopes dBc2/dT ≈ 2 T/K near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. The recent synthesis of the superconductor LaFeAsO0.89F0.11 with transition temperature Tc ≈ 26 K (refs 1–4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO0.84F0.16 (ref. 5), 43 K in SmFeAsO0.9F0.1 (ref. 6), and 52 K in NdFeAsO0.89F0.11 and PrFeAsO0.89F0.11 (refs 7, 8). These discoveries have generated much interest9,10 in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO0.89F0.11 at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field Bc2 compared to values expected from the slopes dBc2/dT ≈ 2 T K-1 near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with Bc2 values surpassing those of Nb3Sn, MgB2 and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-Tc copper oxides.

Journal ArticleDOI
TL;DR: Investigating changes in the microbial and functional communities within soil aggregates obtained along a soil profile spanning the surface, vadose zone, and saturated soil environments found that the microbial communities and putative ammonia-oxidizing and Fe(III)-reducing communities varied greatly along the soil profile, likely reflecting differences in carbon availability, water content, and pH.
Abstract: Spatial heterogeneity in physical, chemical, and biological properties of soils allows for the proliferation of diverse microbial communities. Factors influencing the structuring of microbial communities, including availability of nutrients and water, pH, and soil texture, can vary considerably with soil depth and within soil aggregates. Here we investigated changes in the microbial and functional communities within soil aggregates obtained along a soil profile spanning the surface, vadose zone, and saturated soil environments. The composition and diversity of microbial communities and specific functional groups involved in key pathways in the geochemical cycling of nitrogen, Fe, and sulfur were characterized using a coupled approach involving cultivation-independent analysis of both 16S rRNA (bacterial and archaeal) and functional genes (amoA and dsrAB) as well as cultivation-based analysis of Fe(III)-reducing organisms. Here we found that the microbial communities and putative ammonia-oxidizing and Fe(III)-reducing communities varied greatly along the soil profile, likely reflecting differences in carbon availability, water content, and pH. In particular, the Crenarchaeota 16S rRNA sequences are largely unique to each horizon, sharing a distribution and diversity similar to those of the putative (amoA-based) ammonia-oxidizing archaeal community. Anaerobic microenvironments within soil aggregates also appear to allow for both anaerobic- and aerobic-based metabolisms, further highlighting the complexity and spatial heterogeneity impacting microbial community structure and metabolic potential within soils.

Journal ArticleDOI
TL;DR: This study designs a series of ILs that are able to dissolve carbohydrates but do not considerably inactivate the immobilized lipase B from Candida antarctica, and performs enzymatic transesterifications of methyl methacrylate with D-glucose and cellulose, both fully dissolved in ionic media.

Journal ArticleDOI
03 Oct 2008-Science
TL;DR: Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels and it is important to have a strategy that acknowledges the role of science in promoting sustainability.
Abstract: Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels.

Journal ArticleDOI
TL;DR: In this paper, a two-fluid model for gas-particle flows is constructed from a kinetic theory-based model, and a procedure to extract constitutive models for these models through highly resolved simulations of the kinetic theory based model equations in periodic domains is presented.
Abstract: Starting from a kinetic theory based two-fluid model for gas-particle flows, we first construct filtered two-fluid model equations that average over small scale inhomogeneities that we do not wish to resolve in numerical simulations. We then outline a procedure to extract constitutive models for these filtered two-fluid models through highly resolved simulations of the kinetic theory based model equations in periodic domains. Two- and three-dimensional simulations show that the closure relations for the filtered two-fluid models manifest a definite and systematic dependence on the filter size. Linear stability analysis of the filtered two-fluid model equations reveals that filtering does indeed remove small scale structures that are afforded by the microscopic twofluid model. 2008 American Institute of Chemical Engineers AIChE J, 54: 1431–1448, 2008

Journal ArticleDOI
18 Dec 2008-Nature
TL;DR: Inelastic neutron scattering observations of a magnetic resonance below Tc in Ba0.6K0.4Fe2As2 are reported, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.
Abstract: The discovery of a new family of superconductors containing layers of iron arsenide, the iron oxypnictides, has stimulated much interest, largely because they combine promisingly high transition temperatures with a mechanism of superconductivity rather similar to that of that the high-temperature copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase is suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation that is predicted to occur when the superconducting energy gap has opposite sign on different parts of the Fermi surface. Now inelastic neutron scattering observations of the iron arsenide Ba0.6K0.4Fe2As2 reveal a magnetic resonance below Tc in Ba0.6K0.4Fe2As2, demonstrating that the superconducting energy gap in these materials has unconventional symmetry. A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures and similarities with the high-Tc copper oxide superconductors. This paper reports inelastic neutron scattering observations of a magnetic resonance below Tc in Ba0.6K0.4Fe2As2, demonstrating that the superconducting energy gap has unconventional symmetry. A new family of superconductors containing layers of iron arsenide1,2,3 has attracted considerable interest because of their high transition temperatures (Tc), some of which are >50 K, and because of similarities with the high-Tc copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping4. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase5,6,7,8,9. This resonance, which has also been observed in several heavy-fermion superconductors10,11,12, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface13, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range14. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface15. Here we report inelastic neutron scattering observations of a magnetic resonance below Tc in Ba0.6K0.4Fe2As2, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

Journal ArticleDOI
TL;DR: In this article, the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions are presented, and the best estimate is that China became the largest national source of CO 2 emissions during 2006.
Abstract: Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate

Journal ArticleDOI
TL;DR: First-principles density functional theory studies show that both Ca and Sr can bind strongly to the C60 surface, and highly prefer monolayer coating, thereby explaining existing experimental observations.
Abstract: We explore theoretically the feasibility of functionalizing carbon nanostructures for hydrogen storage, focusing on the coating of C60 fullerenes with light alkaline-earth metals. Our first-principles density functional theory studies show that both Ca and Sr can bind strongly to the C60 surface, and highly prefer monolayer coating, thereby explaining existing experimental observations. The strong binding is attributed to an intriguing charge transfer mechanism involving the empty d levels of the metal elements. The charge redistribution, in turn, gives rise to electric fields surrounding the coated fullerenes, which can now function as ideal molecular hydrogen attractors. With a hydrogen uptake of >8.4 wt % on Ca32C60, Ca is superior to all the recently suggested metal coating elements.

Journal ArticleDOI
TL;DR: In this paper, the combination of Ba and Yb fillers inside the voids of the skutterudite structure provides a broad range of resonant phonon scattering and consequently a strong suppression in the lattice thermal conductivity.
Abstract: Filled skutterudites are one of the most promising thermoelectric materials for power generation applications. The choice and concentration of filler atoms are key aspects for achieving high thermoelectric figure of merit values. We report on the high temperature thermoelectric properties in the double-filled skutterudites BaxYbyCo4Sb12. The combination of Ba and Yb fillers inside the voids of the skutterudite structure provides a broad range of resonant phonon scattering and consequently a strong suppression in the lattice thermal conductivity is observed. A dimensionless thermoelectric figure of merit of 1.36 at 800K is achievable for n-type BaxYbyCo4Sb12.

Journal ArticleDOI
TL;DR: In this article, two proposed mechanisms for carbon enrichment during partitioning include carbon transport from martensite and/or the formation of carbide-free bainite, and experimentally measured austenite fractions are difficult to explain.

Journal ArticleDOI
TL;DR: Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine.
Abstract: Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at −45 °C.