scispace - formally typeset
Search or ask a question

Showing papers by "Oak Ridge National Laboratory published in 2010"


Journal ArticleDOI
TL;DR: This work developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm), which achieved good results compared to existing methods, and it is believed it will be a valuable asset to automated microbial annotation pipelines.
Abstract: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/ . Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.

7,157 citations


Journal ArticleDOI
11 Feb 2010-Nature
TL;DR: A new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community is described.
Abstract: Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

5,670 citations


Journal ArticleDOI
TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.

4,666 citations


Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.
Abstract: Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.

3,344 citations


Journal ArticleDOI
TL;DR: It is shown how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries.
Abstract: Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

2,375 citations


Journal ArticleDOI
John P. Vogel1, David F. Garvin2, Todd C. Mockler2, Jeremy Schmutz, Daniel S. Rokhsar3, Michael W. Bevan4, Kerrie Barry5, Susan Lucas5, Miranda Harmon-Smith5, Kathleen Lail5, Hope Tice5, Jane Grimwood, Neil McKenzie4, Naxin Huo6, Yong Q. Gu6, Gerard R. Lazo6, Olin D. Anderson6, Frank M. You7, Ming-Cheng Luo7, Jan Dvorak7, Jonathan M. Wright4, Melanie Febrer4, Dominika Idziak8, Robert Hasterok8, Erika Lindquist5, Mei Wang5, Samuel E. Fox2, Henry D. Priest2, Sergei A. Filichkin2, Scott A. Givan2, Douglas W. Bryant2, Jeff H. Chang2, Haiyan Wu9, Wei Wu10, An-Ping Hsia10, Patrick S. Schnable9, Anantharaman Kalyanaraman11, Brad Barbazuk12, Todd P. Michael, Samuel P. Hazen13, Jennifer N. Bragg6, Debbie Laudencia-Chingcuanco6, Yiqun Weng14, Georg Haberer, Manuel Spannagl, Klaus F. X. Mayer, Thomas Rattei15, Therese Mitros3, Sang-Jik Lee16, Jocelyn K. C. Rose16, Lukas A. Mueller16, Thomas L. York16, Thomas Wicker17, Jan P. Buchmann17, Jaakko Tanskanen18, Alan H. Schulman18, Heidrun Gundlach, Michael W. Bevan4, Antonio Costa de Oliveira19, Luciano da C. Maia19, William R. Belknap6, Ning Jiang, Jinsheng Lai9, Liucun Zhu20, Jianxin Ma20, Cheng Sun21, Ellen J. Pritham21, Jérôme Salse, Florent Murat, Michael Abrouk, Rémy Bruggmann, Joachim Messing, Noah Fahlgren2, Christopher M. Sullivan2, James C. Carrington2, Elisabeth J. Chapman, Greg D. May22, Jixian Zhai23, Matthias Ganssmann23, Sai Guna Ranjan Gurazada23, Marcelo A German23, Blake C. Meyers23, Pamela J. Green23, Ludmila Tyler3, Jiajie Wu7, James A. Thomson6, Shan Chen13, Henrik Vibe Scheller24, Jesper Harholt25, Peter Ulvskov25, Jeffrey A. Kimbrel2, Laura E. Bartley24, Peijian Cao24, Ki-Hong Jung26, Manoj Sharma24, Miguel E. Vega-Sánchez24, Pamela C. Ronald24, Chris Dardick6, Stefanie De Bodt27, Wim Verelst27, Dirk Inzé27, Maren Heese28, Arp Schnittger28, Xiaohan Yang29, Udaya C. Kalluri29, Gerald A. Tuskan29, Zhihua Hua14, Richard D. Vierstra14, Yu Cui9, Shuhong Ouyang9, Qixin Sun9, Zhiyong Liu9, Alper Yilmaz30, Erich Grotewold30, Richard Sibout31, Kian Hématy31, Grégory Mouille31, Herman Höfte31, Todd P. Michael, Jérôme Pelloux32, Devin O'Connor3, James C. Schnable3, Scott C. Rowe3, Frank G. Harmon3, Cynthia L. Cass33, John C. Sedbrook33, Mary E. Byrne4, Sean Walsh4, Janet Higgins4, Pinghua Li16, Thomas P. Brutnell16, Turgay Unver34, Hikmet Budak34, Harry Belcram, Mathieu Charles, Boulos Chalhoub, Ivan Baxter35 
11 Feb 2010-Nature
TL;DR: The high-quality genome sequence will help Brachypodium reach its potential as an important model system for developing new energy and food crops and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat.
Abstract: Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

1,603 citations


Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects.
Abstract: An imaging technique able to resolve and identify all individual atoms in non-periodic solids would be a very useful tool for materials analysis. Annular dark-field (ADF) imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation allows such an analysis, as shown by Ondrej Krivanek and co-workers. The technique was used to examine a monolayer of boron nitride, in which it revealed individual atomic substitutions involving carbon and oxygen impurity atoms. Careful analysis of the data enables the construction of a detailed map of the atomic structure, with all the atoms of the four species resolved and identified. An imaging technique that could identify all the individual atoms, including defects, in a material would be a useful tool. Here an electron-microscopy approach to the problem, based on annular dark-field imaging, is described. A monolayer of boron nitride was studied, and three types of atomic substitution were identified. Careful analysis of the data enabled the construction of a detailed map of the atomic structure. Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on1. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics2,3,4,5,6,7,8. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible.

1,152 citations


Journal ArticleDOI
TL;DR: It is described how approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye-Waller effects.
Abstract: We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e.g., the plasmon-pole model for the self-energy, the final-state rule for screened core hole effects, and the correlated Debye model for vibrational damping. Here we describe how these approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye–Waller effects. We also discuss the implementation of these models and software improvements within the FEFF9 code, together with a number of examples.

950 citations


Journal ArticleDOI
09 Jul 2010-Langmuir
TL;DR: In this study, ceria nanocrystals with well-defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O(2) adsorption, and the stability and reactivity of these oxygen species are found to be surface-dependent.
Abstract: Defect sites play an essential role in ceria catalysis. In this study, ceria nanocrystals with well-defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O2 adsorption. Ceria nanorods ({110} + {100}), nanocubes ({100}), and nano-octahedra ({111}) are employed to analyze the quantity and quality of defect sites on different ceria surfaces. On oxidized surfaces, nanorods have the most abundant intrinsic defect sites, followed by nanocubes and nano-octahedra. When reduced, the induced defect sites are more clustered on nanorods than on nanocubes, although similar amounts (based on surface area) of such defect sites are produced on the two surfaces. Very few defect sites can be generated on the nano-octahedra due to the least reducibility. These differences can be rationalized by the crystallographic surface terminations of the ceria nanocrystals. The different defect sites on these nanocrystals lead to the adsorption of different surface dioxygen...

848 citations


Journal ArticleDOI
TL;DR: Leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to elevated CO2; these observations are consistent with stand- level model projections.
Abstract: Stimulation of terrestrial plant production by rising CO2 concentration is projected to reduce the airborne fraction of anthropogenic CO2 emissions. Coupled climate–carbon cycle models are sensitive to this negative feedback on atmospheric CO2, but model projections are uncertain because of the expectation that feedbacks through the nitrogen (N) cycle will reduce this so-called CO2 fertilization effect. We assessed whether N limitation caused a reduced stimulation of net primary productivity (NPP) by elevated atmospheric CO2 concentration over 11 y in a free-air CO2 enrichment (FACE) experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee. During the first 6 y of the experiment, NPP was significantly enhanced in forest plots exposed to 550 ppm CO2 compared with NPP in plots in current ambient CO2, and this was a consistent and sustained response. However, the enhancement of NPP under elevated CO2 declined from 24% in 2001–2003 to 9% in 2008. Global analyses that assume a sustained CO2 fertilization effect are no longer supported by this FACE experiment. N budget analysis supports the premise that N availability was limiting to tree growth and declining over time —an expected consequence of stand development, which was exacerbated by elevated CO2. Leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to elevated CO2; these observations are consistent with stand-level model projections. This FACE experiment provides strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments.

Journal ArticleDOI
TL;DR: In this Review, the use of ionic liquids in the preparation of several categories of inorganic and hybrid materials (i.e., metal structures, non-metal elements, silicas, organosilicas, metal oxides, metal chalcogenide, metal salts, open-framework structures, ionic liquid-functionalized materials, and supported ionsic liquids) is summarized.
Abstract: Conventional synthesis of inorganic materials relies heavily on water and organic solvents. Alternatively, the synthesis of inorganic materials using, or in the presence of, ionic liquids represents a burgeoning direction in materials chemistry. Use of ionic liquids in solvent extraction and organic catalysis has been extensively studied, but their use in inorganic synthesis has just begun. Ionic liquids are a family of non-conventional molten salts that can act as templates and precursors to inorganic materials, as well as solvents. They offer many advantages, such as negligible vapor pressures, wide liquidus ranges, good thermal stability, tunable solubility for both organic and inorganic molecules, and much synthetic flexibility. In this Review, the use of ionic liquids in the preparation of several categories of inorganic and hybrid materials (i.e., metal structures, non-metal elements, silicas, organosilicas, metal oxides, metal chalcogenides, metal salts, open-framework structures, ionic liquid-functionalized materials, and supported ionic liquids) is summarized. The status quo of the research field is assessed, and some future perspectives are furnished.

Journal ArticleDOI
TL;DR: The results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition.
Abstract: Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3 degrees C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.

Journal ArticleDOI
K. Aamodt1, Betty Abelev2, A. Abrahantes Quintana, Dagmar Adamová3  +1011 moreInstitutions (81)
TL;DR: In this paper, the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider was performed in the central pseudorapidity region.
Abstract: We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV/c. The elliptic flow signal v(2), measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 +/- 0.002(stat) +/- 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v(2)(p(t)) reaches a maximum of 0.2 near p(t) = 3 GeV/c. Compared to RHIC Au-Au collisions at root s(NN) = 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

Proceedings ArticleDOI
14 Mar 2010
TL;DR: The Scalable HeterOgeneous Computing benchmark suite (SHOC) is a spectrum of programs that test the performance and stability of scalable heterogeneous computing systems and includes benchmark implementations in both OpenCL and CUDA in order to provide a comparison of these programming models.
Abstract: Scalable heterogeneous computing systems, which are composed of a mix of compute devices, such as commodity multicore processors, graphics processors, reconfigurable processors, and others, are gaining attention as one approach to continuing performance improvement while managing the new challenge of energy efficiency. As these systems become more common, it is important to be able to compare and contrast architectural designs and programming systems in a fair and open forum. To this end, we have designed the Scalable HeterOgeneous Computing benchmark suite (SHOC). SHOC's initial focus is on systems containing graphics processing units (GPUs) and multi-core processors, and on the new OpenCL programming standard. SHOC is a spectrum of programs that test the performance and stability of these scalable heterogeneous computing systems. At the lowest level, SHOC uses microbenchmarks to assess architectural features of the system. At higher levels, SHOC uses application kernels to determine system-wide performance including many system features such as intranode and internode communication among devices. SHOC includes benchmark implementations in both OpenCL and CUDA in order to provide a comparison of these programming models.

Journal ArticleDOI
TL;DR: In this article, the composition of the key chemical constituents of hybrid poplar species used for bio-fuels is reviewed, with emphasis on lignin struc- ture.
Abstract: The growing demand for transportation fuels, along with concerns about the harmful effects of greenhouse gas emissions from the burning of fossil fuels, has assured a viable future for the development of alternative fuels from renewable resources, such as lignocellulosic biomass. The effi cient utilization of these biomass resources is critically dependant on the in-depth knowledge of their chemical constituents. This, together with the desired fuel properties, helps tailor the chemical and/or enzymatic processes involved in converting biomass to biofuels. Hybrid poplars are among the fastest growing temperate trees in the world and a very promising feedstock for biofuels and other value-added products. Sequencing of the poplar genome has paved the way for tailoring new cultivars and clones optimized for biofuels production. Our objective is to review published research on the composition of the key chemical constituents of hybrid poplar species used for biofuels. Biomass yields, elemental composition, carbohy- drate and lignin content and composition are some of the characteristics reviewed, with emphasis on lignin struc- ture. Genetic modifi cations used to alter lignin content and composition, with the aim of improving biofuels yields, are also examined. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd

Journal ArticleDOI
TL;DR: In this article, the authors present updated information on their present and near-future estimates of CO2 emissions from fossil fuel burning and estimate that emissions from deforestation and other land-use changes have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.
Abstract: Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Journal ArticleDOI
TL;DR: The spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) is probed at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries.
Abstract: The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.

Journal ArticleDOI
TL;DR: In this paper, a modified index accounting for seasonality is proposed for precipitation and streamflow marginals, and a joint deficit index (JDI) is defined by using the distribution function of copulas.

Journal ArticleDOI
TL;DR: In this paper, a spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport is used to simulate the collapse, bounce, explosion, and the neutrini-driven wind phases consistently over more than 20 s.
Abstract: Massive stars end their lives in explosions with kinetic energies on the order of 10 51 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediatemass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8. 8M � O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 kB/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account.

Journal ArticleDOI
TL;DR: A novel parylene membrane filter-based portable microdevice for size-based isolation with high recovery rate and direct on-chip characterization of captured CTC from human peripheral blood has the potential to enable routine CTC analysis in the clinical setting for the effective management of cancer patients.
Abstract: Purpose: Sensitive detection and characterization of circulating tumor cells (CTC) could revolutionize the approach to patients with early-stage and metastatic cancer. The current methodologies have significant limitations, including limited capture efficiency and ability to characterize captured cells. Here, we report the development of a novel parylene membrane filter-based portable microdevice for size-based isolation with high recovery rate and direct on-chip characterization of captured CTC from human peripheral blood. Experimental Design: We evaluated the sensitivity and efficiency of CTC capture in a model system using blood samples from healthy donors spiked with tumor cell lines. Fifty-nine model system samples were tested to determine the recovery rate of the microdevice. Moreover, 10 model system samples and 57 blood samples from cancer patients were subjected to both membrane microfilter device and CellSearch platform enumeration for direct comparison. Results: Using the model system, the microdevice achieved >90% recovery with probability of 95% recovering at least one cell when five are seeded in 7.5 mL of blood. CTCs were identified in 51 of 57 patients using the microdevice, compared with only 26 patients with the CellSearch method. When CTCs were detected by both methods, greater numbers were recovered by the microfilter device in all but five patients. Conclusions: This filter-based microdevice is both a capture and analysis platform, capable of multiplexed imaging and genetic analysis. The microdevice presented here has the potential to enable routine CTC analysis in the clinical setting for the effective management of cancer patients.

Journal ArticleDOI
TL;DR: PILs from a superbase and fluorinated alcohol, imidazole, pyrrolinone, or phenol are capable of rapid and reversible capture of about one equivalent of CO{sub 2}, which is superior to those sorption systems based on traditional aprotic ILs.
Abstract: Protic ionic liquids (PILs) from a superbase and fluorinated alcohol, imidazole, pyrrolinone, or phenol were designed to capture CO{sub 2} based on the reactivity of their anions to CO{sub 2}. These PILs are capable of rapid and reversible capture of about one equivalent of CO{sub 2}, which is superior to those sorption systems based on traditional aprotic ILs.

Journal ArticleDOI
TL;DR: In this article, an exchange functional which is compatible with the nonlocal Rutgers-Chalmers correlation functional [van der Waals density functional (vdW-DF)] is presented.
Abstract: In this Rapid Communication, an exchange functional which is compatible with the nonlocal Rutgers-Chalmers correlation functional [van der Waals density functional (vdW-DF)] is presented. This functional, when employed with vdW-DF, demonstrates remarkable improvements on intermolecular separation distances while further improving the accuracy of vdW-DF interaction energies. The key to the success of this three-parameter functional is its reduction in short-range exchange repulsion through matching to the gradient expansion approximation in the slowly varying/high-density limit while recovering the large reduced gradient, $s$, limit set in the revised Perdew-Burke-Ernzerhof (revPBE) exchange functional. This augmented exchange functional could be a solution to long-standing issues of vdW-DF lending to further applicability of density-functional theory to the study of relatively large, dispersion bound (van der Waals) complexes.

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent progress in applications of piezoresponse force microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching processes.
Abstract: Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway toward ultrahigh (>10 TBit inch−2) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize the recent progress in applications of piezoresponse force microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments and spectroscopic studies of polarization switching, are discussed in detail. Finally, we review the recent progress on understanding and exploiting photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells and supercapacitor applications.

Journal ArticleDOI
TL;DR: This work carries out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory, with new model-based, derivative-free optimization algorithm.
Abstract: We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set unedf0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

Journal ArticleDOI
01 Jun 2010
TL;DR: The need for new algorithms that would split the computation in a way that would fully exploit the power that each of the hybrid components possesses is motivated, and the need for a DLA library similar to LAPACK but for hybrid manycore/GPU systems is envisioned.
Abstract: We highlight the trends leading to the increased appeal of using hybrid multicore+GPU systems for high performance computing. We present a set of techniques that can be used to develop efficient dense linear algebra algorithms for these systems. We illustrate the main ideas with the development of a hybrid LU factorization algorithm where we split the computation over a multicore and a graphics processor, and use particular techniques to reduce the amount of pivoting and communication between the hybrid components. This results in an efficient algorithm with balanced use of a multicore processor and a graphics processor.

Journal ArticleDOI
TL;DR: Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.
Abstract: Through cation exchange capacity assay, nitrogen adsorption−desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 °C and gasification at 700 °C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that...

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +441 moreInstitutions (49)
TL;DR: In this paper, the production of e(+)e(-) pairs for m(e+e-) < 0.3 GeV/c(2) and 1 < p(T) < 5 GeV /c is measured in p + p and Au + Au collisions at root s(NN) = 200 GeV.
Abstract: The production of e(+)e(-) pairs for m(e+e-) < 0.3 GeV/c(2) and 1< p(T) < 5 GeV/c is measured in p + p and Au + Au collisions at root s(NN) = 200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au + Au collisions, the excess of the direct photon yield over p + p is exponential in transverse momentum, with an inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T-init similar to 300-600 MeV at times of similar to 0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at similar to 170 MeV.

Journal ArticleDOI
TL;DR: In this paper, the authors present observational estimates of desert dust based on pa- leodata proxies showing a doubling of the amount of dust during the 20th century over much, but not all the globe.
Abstract: Desert dust perturbs climate by directly and in- directly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and tempera- ture, in addition to modifying ocean and land biogeochem- istry. While we know that desert dust is sensitive to pertur- bations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on pa- leodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these ob- servational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of at- mosphere) over the 20th century to be 0.14± 0.11 W/m 2 (1990-1999 vs. 1905-1914). The estimated radiative change

Journal ArticleDOI
TL;DR: Results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.
Abstract: Summary • Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? • In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g )1 soil) to soils amended with and without 13 C-labeled plant residue. We measured CO2 respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). • Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g )1 ) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g )1 ) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g )1 ) reduced decomposition ()50%). Concurrently, high exudate concentrations (> 3.6 mg C g )1 ) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g )1 ) increased metabolic activity rather than gene copy numbers. • These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.