scispace - formally typeset
Search or ask a question

Showing papers by "Oak Ridge National Laboratory published in 2022"


Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the lignin structural transformation upon different types of pretreatments and the inhibition mechanism of Lignin in the bioconversion of lignocellulose to bioethanol is summarized.
Abstract: Efficiently producing second-generation biofuels from biomass is of strategic significance and meets sustainability targets, but it remains a long-term challenge due to the existence of biomass recalcitrance. Lignin contributes significantly to biomass recalcitrance by physically limiting the access of enzymes to carbohydrates, and this could be partially overcome by applying a pretreatment step to directly target lignin. However, lignin typically cannot be completely removed, and its structure is also significantly altered during the pretreatment. As a result, lignin residue in the pretreated materials still significantly hindered a complete conversion of carbohydrate to its monosugars by interacting with cellulase enzymes. The non-productive adsorption driven by hydrophobic, electrostatic, and/or hydrogen bonding interactions is widely considered as the major mechanism of action governing the unfavored lignin-enzyme interaction. One could argue this type of interaction between lignin residue and the activated enzymes is the major roadblock for efficient enzymatic hydrolysis of pretreated lignocellulosics. To alleviate the negative effects of lignin on enzyme performance, a deep understanding of lignin structural transformation upon different types of pretreatments as well as how and where does lignin bind to enzymes are prerequisites. In the last decade, the progress toward a fundamental understanding of lignin-enzyme interaction, structural characterization of lignin during pretreatment and/or conformation change of enzyme during hydrolysis is resulting in advances in the development of methodologies to mitigate the negative effect of lignin. Here in this review, the lignin structural transformation upon different types of pretreatments and the inhibition mechanism of lignin in the bioconversion of lignocellulose to bioethanol are summarized. Some technologies to minimize the adverse impact of lignin on the enzymatic hydrolysis, including chemical modification of lignin, adding blocking additives, and post-treatment to remove lignin were also introduced. The production of liquid biofuels from lignocellulosic biomass has shown great environmental benefits such as reducing greenhouse gas emissions and mitigate climate change. By addressing the root causes of lignin-enzyme interaction and how to retard this interaction, it is our hope that this comprehensive review will pave the way for significantly reducing the high cost associated with the enzymatic hydrolysis process, and ultimately achieving a cost-effective and sustainable biorefinery system.

135 citations


Journal ArticleDOI
Tracy Hussell1, Ramsey Sabit2, Rachel Upthegrove3, Daniel M. Forton4  +524 moreInstitutions (270)
TL;DR: The Post-hospitalisation COVID-19 study (PHOSP-COVID) as mentioned in this paper is a prospective, longitudinal cohort study recruiting adults (aged ≥18 years) discharged from hospital with COVID19 across the UK.

118 citations


Journal ArticleDOI
TL;DR: The novel abstractions that have been added to Kokkos version 3 such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations to prepare for exascale era architectures are described.
Abstract: As the push towards exascale hardware has increased the diversity of system architectures, performance portability has become a critical aspect for scientific software. We describe the Kokkos Performance Portable Programming Model that allows developers to write single source applications for diverse high-performance computing architectures. Kokkos provides key abstractions for both the compute and memory hierarchy of modern hardware. We describe the novel abstractions that have been added to Kokkos version 3 such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations to prepare for exascale era architectures. We demonstrate the performance of these new features with reproducible benchmarks on CPUs and GPUs.

117 citations


Journal ArticleDOI
TL;DR: In this article, a review of the current advances and future directions in plastic waste upcycling technologies are discussed, focusing on the production of high-value materials from plastic waste conversion methods, including pyrolysis, gasification, photoreforming, and mechanical reprocessing.

113 citations


Journal ArticleDOI
Pierre Friedlingstein1, Sönke Zaehle2, Corinne Le Quéré3, Christian Rödenbeck2, Bronte Tilbrook, Henry C. Bittig4, Denis Pierrot5, Louise Chini6, Jan Ivar Korsbakken7, Nicolas Bellouin8, Toste Tanhua9, Benjamin Poulter10, Peter Landschützer11, Francesco N. Tubiello12, Judith Hauck13, Are Olsen14, Vivek K. Arora15, Colm Sweeney16, Almut Arneth17, Marion Gehlen18, Hiroyuki Tsujino19, Daniel P. Kennedy20, Yosuke Iida19, Luke Gregor21, Jiye Zeng22, George C. Hurtt6, Nicolas Mayot23, Giacomo Grassi24, Shin-Ichiro Nakaoka22, Frédéric Chevallier18, Clemens Schwingshackl7, Wiley Evans25, Meike Becker26, Thomas Gasser27, Xu Yue28, Katie Pocock25, Stephanie Falk29, Thanos Gkritzalis11, Naiqing Pan30, Ingrid T. van der Laan-Luijkx31, Fraser Holding32, Carlos Gustavo Halaburda, Guanghong Zhou33, Peter Angele34, Jianling Chen1, e6gehqc68135, Carlos Muñoz Pérez23, Hiroshi Niinami36, Zongwe Binesikwe Crystal Hardy, Samuel Bourne37, Ralf Wüsthofen38, Paulo Brito, Christian Liguori39, Juan A. Martin-Ramos, Rattan Lal, kensetyrdhhtml2mdcom40, Staffan Furusten, Luca Miceli41, Eric Horster16, V. Miranda Chase, Field Palaeobiology Lab30, Living Tree Cbd Gummies, Lifeng Qin34, Yong Tang42, Annie Phillips43, Nathalie Fenouil26, mark, Karina Querne de Carvalho44, Satya Wydya Yenny, Maja Bak Herrie, Silvia Ravelli45, Andreas Gerster46, Denise Hottmann47, Wui-Lee Chang, Andreas Lutz48, Olga D. Vorob'eva49, Pallavi Banerjee1, Verónica Undurraga50, Jovan Babić, Michele D. Wallace9, Mònica Ginés-Blasi, 에볼루션카지노51, James Kelvin29, Christos Kontzinos1, Охунова Дилафруз Муминовна, Isabell Diekmann, Emily Burgoyne16, Vilemina Čenić52, Naomi Gikonyo26, CHAO LUAN21, Benjamin Pfluger53, Benjamin Pfluger54, A. J. Shields, Kobzos, Laszlo55, Adrian Langer56, Stuart L. Weinstein55, Abdullah ÖZÇELİK57, Yi Chen58, Anzhelika Solodka59, Valery Vasil'evich Kozlov60, Н.С. Рыжук, Roshan Vasant Shinde, Dr Sandeep Haribhau Wankhade, Dr Nitin Gajanan Shekapure, Mr Sachin Shrikant …61, Mylene Charon7, David Seibt62, Kobi Peled, None Rahmi52 
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Leibniz Institute for Baltic Sea Research4, Atlantic Oceanographic and Meteorological Laboratory5, University of Maryland, College Park6, CICERO Center for International Climate Research7, University of Reading8, Leibniz Institute of Marine Sciences9, Goddard Space Flight Center10, Flanders Marine Institute11, Food and Agriculture Organization12, Alfred Wegener Institute for Polar and Marine Research13, Geophysical Institute14, University of Victoria15, National Oceanic and Atmospheric Administration16, Karlsruhe Institute of Technology17, Laboratoire des Sciences du Climat et de l'Environnement18, Japan Meteorological Agency19, Indiana University20, ETH Zurich21, National Institute for Environmental Studies22, University of East Anglia23, European Commission24, Tula Foundation25, Bjerknes Centre for Climate Research26, Hertie Institute for Clinical Brain Research27, Nanjing University of Information Science and Technology28, Ludwig Maximilian University of Munich29, Auburn University30, Wageningen University and Research Centre31, University of Western Sydney32, Cooperative Institute for Research in Environmental Sciences33, Tsinghua University34, University of Florida35, Center for Neuroscience and Regenerative Medicine36, Woods Hole Research Center37, University of Alaska Fairbanks38, Princeton University39, Michigan State University40, University of Washington41, Appalachian State University42, Sun Yat-sen University43, Imperial College London44, University of Groningen45, University of Tennessee46, Washington University in St. Louis47, Jilin Medical University48, Tohoku University49, Rutgers University50, Centre for Research on Ecology and Forestry Applications51, Institut Pierre-Simon Laplace52, North West Agriculture and Forestry University53, Northwest A&F University54, Pacific Marine Environmental Laboratory55, Xi'an Jiaotong University56, Stanford University57, National Center for Atmospheric Research58, University of Edinburgh59, Max Planck Institute for Meteorology60, Utrecht University61, Oak Ridge National Laboratory62
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).

98 citations


Journal ArticleDOI
TL;DR: In this paper, a series of confined indium-nickel (In-Ni) intermetallic alloy nanocatalysts (InxNi@SiO2) have been prepared and displayed superior coking resistance for DRM reaction.

68 citations


Journal ArticleDOI
TL;DR: Wright et al. as discussed by the authors found that ITGB8-AS1 was highly expressed in colorectal cancer (CRC), and they proposed to target it using antisense oligonucleotide (ASO).

48 citations


Journal ArticleDOI
TL;DR: In this paper , adaptive sampling is used for enrichment of rarer species within metagenomic samples, creating a synthetic mock community and constructing sequencing libraries with a range of mean read lengths.
Abstract: Adaptive sampling is a method of software-controlled enrichment unique to nanopore sequencing platforms. To test its potential for enrichment of rarer species within metagenomic samples, we create a synthetic mock community and construct sequencing libraries with a range of mean read lengths. Enrichment is up to 13.87-fold for the least abundant species in the longest read length library; factoring in reduced yields from rejecting molecules the calculated efficiency raises this to 4.93-fold. Finally, we introduce a mathematical model of enrichment based on molecule length and relative abundance, whose predictions correlate strongly with mock and complex real-world microbial communities.

43 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of reprocessing/recycling on the material properties of NFRPCs are discussed, including mechanical performance, thermal properties, hygroscopic behavior, viscoelasticity, degradation, and durability.
Abstract: Natural fibers have been widely used for reinforcing polymers attributed to their sustainable nature, excellent stiffness to weight ratio, biodegradability, and low cost compared with synthetic fibers like carbon or glass fibers. Thermoplastic composites offer an advantage of recyclability after their service life, but challenges and opportunities remain in the recycling of natural fiber reinforced polymer composites (NFRPCs). This article summarized the effects of reprocessing/recycling on the material properties of NFRPCs. The material properties considered include mechanical performance, thermal properties, hygroscopic behavior, viscoelasticity, degradation, and durability. NFRPCs can generally be recycled approximately 4–6 times until their thermomechanical properties change. After recycling 7 times, the tensile strength of NFRPCs can decrease by 17%, and the tensile modulus can decrease by 28%. The mitigation approaches to overcome degradation of material properties of NFRPCs such as adding functional additives and virgin plastics are also discussed. The main challenges in these approaches such as degradation and incompatibility are discussed, and an effort is made to provide a rationale for reprocessing/recyclability assessment. Future applications of NFRPCs such as additive manufacturing and automotive part use are discussed.

41 citations


Journal ArticleDOI
TL;DR: In this paper, a Pd-loaded N-doped carbon catalyst (ACNpd) for phenol hydrogenation was prepared from chitosan by hydrothermal carbonization.

32 citations


Journal ArticleDOI
01 May 2022
TL;DR: In this article , a lead-free dielectric capacitors with high recoverable energy storage density (Wrec), large energy storage efficiency (η), and wide usage temperature range are in high demand for pulse power systems.
Abstract: Development of lead-free dielectric capacitors with high recoverable energy storage density (Wrec), large energy storage efficiency (η), and wide usage temperature range are in high demanded for pulse power systems. Herein, we realized the enhancement of energy storage properties [high Wrec = 3.76 J/cm3, large η = 78.80 %, and broad operating temperature range (20−180 °C)] in lead-free Na0.5Bi0.5TiO3 (BNT)-based relaxor ferroelectrics via component regulation. Excellent energy storage properties mainly originate from suppressing early polarization saturation and improving dielectric breakdown strength (Eb). Domain evolution on the nanoscale offers robust support to suppression of early polarization saturation. The enhancement of Eb can be derived from the contribution of the Mg-rich phase, which is also corroborative via first-principles calculation on basis of density functional theory (DFT). We believe that these findings in this work may provide a practicable guideline to build new lead-free ceramics for electrical energy storage applications.

Journal ArticleDOI
TL;DR: In this paper, a new platinum group metal (PGM)-free proton exchange membrane fuel cell (PEMFC) cathode catalyst materials, synthesized using the VariPore™ method by Pajarito Powder, LLC, are characterized for their structure and activity.

Journal ArticleDOI
TL;DR: In this paper, the equiatomic Cr-Co-Ni medium-entropy alloy has the face-centered cubic (FCC) structure and was grown and tested in tension and compression between 14k and 13k with the loading axis parallel to [ 1 ¯ 23].

Journal ArticleDOI
TL;DR: In this article , a machine learning framework is proposed to discover relationships between local domain structure and polarization-switching characteristics in ferroelectric materials encoded in the hysteresis loop.
Abstract: Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum of applications ranging from domain wall electronics to high dielectric and electromechanical responses. Many of these functionalities have been discovered and quantified via local scanning probe microscopy methods. However, the search has until now been based on either trial and error, or using auxiliary information such as the topography or domain wall structure to identify potential objects of interest on the basis of the intuition of operator or pre-existing hypotheses, with subsequent manual exploration. Here we report the development and implementation of a machine learning framework that actively discovers relationships between local domain structure and polarization-switching characteristics in ferroelectric materials encoded in the hysteresis loop. The hysteresis loops and their scalar descriptors such as nucleation bias, coercive bias and the hysteresis loop area (or more complex functionals of hysteresis loop shape) and corresponding uncertainties are used to guide the discovery of these relationships via automated piezoresponse force microscopy and spectroscopy experiments. As such, this approach combines the power of machine learning methods to learn the correlative relationships between high-dimensional data, as well as human-based physics insights encoded into the acquisition function. For ferroelectric materials, this automated workflow demonstrates that the discovery path and sampling points of on- and off-field hysteresis loops are largely different, indicating that on- and off-field hysteresis loops are dominated by different mechanisms. The proposed approach is universal and can be applied to a broad range of modern imaging and spectroscopy methods ranging from other scanning probe microscopy modalities to electron microscopy and chemical imaging.

Journal ArticleDOI
TL;DR: By observing the microstructure evolution of Mg-Ga alloy during tensile deformation, it was found that the prismatic slip and the pyramidal slip occur during the tensile process at room temperature, which finally leads to the plenty of dislocation accumulation as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, a clay/cross-linked network polymer-based artificial SEI layer (named as NCL) is prepared via compositing lithiated halloysite nanotubes (Li-HNTs) and crosslinked network polymers.

Journal ArticleDOI
TL;DR: In this paper , an active learning approach based on conavigation of the hypothesis and experimental spaces is introduced, which is realized by combining the structured Gaussian processes containing probabilistic models of the possible system's behaviors (hypotheses) with reinforcement learning policy refinement (discovery).
Abstract: Machine learning is rapidly becoming an integral part of experimental physical discovery via automated and high-throughput synthesis, and active experiments in scattering and electron/probe microscopy. This, in turn, necessitates the development of active learning methods capable of exploring relevant parameter spaces with the smallest number of steps. Here, an active learning approach based on conavigation of the hypothesis and experimental spaces is introduced. This is realized by combining the structured Gaussian processes containing probabilistic models of the possible system's behaviors (hypotheses) with reinforcement learning policy refinement (discovery). This approach closely resembles classical human-driven physical discovery, when several alternative hypotheses realized via models with adjustable parameters are tested during an experiment. This approach is demonstrated for exploring concentration-induced phase transitions in combinatorial libraries of Sm-doped BiFeO3 using piezoresponse force microscopy, but it is straightforward to extend it to higher-dimensional parameter spaces and more complex physical problems once the experimental workflow and hypothesis generation are available.

Journal ArticleDOI
TL;DR: In this paper , surface engineering, including surface termination groups, surface functionalization, surface defects and surface oxidation, of MXenes, and their impact on energy and environmental applications are reviewed.
Abstract: This paper reviews the surface engineering, including surface termination groups, surface functionalization, surface defects and surface oxidation, of MXenes, and their impact on energy and environmental applications of MXenes.

Journal ArticleDOI
TL;DR: In this paper, the Al-2.5Mg-1.0Ni-0.1Zr alloy was designed intentionally with an extraordinarily high cracking susceptibility, making it prime for solidification cracking during laser powder bed fusion.

Journal ArticleDOI
TL;DR: In this paper , a quantum Monte Carlo dynamical cluster approximation (DCA) method was used to resolve both the fluctuating spin and charge orders in the doped single-band Hubbard model in the thermodynamic limit.
Abstract: The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite-cluster methods typically indicate that stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides an opportunity to study the influence of fluctuating stripe correlations on the model's pairing correlations within a unified numerical framework. Using this approach, we also find evidence for pair-density-wave correlations whose strength is correlated with that of the stripes.

Journal ArticleDOI
TL;DR: In this article , a scalable hydrothermal approach was proposed to fabricate ionomer-free integrated electrodes with engineered 1 T 2 H heterophase and defect-rich MoS2 nanosheets (MoS2NSs) in-situ grown onto the carbon fiber paper (CFP).
Abstract: Low electrical conductivity and poor accessibility of MoS2 reaction sites raise great challenges in maximizing the triple-phase-boundary (TPB) sites of MoS2-based electrodes and minimizing ohmic losses for efficient hydrogen evolution reaction (HER) in practical proton exchange membrane (PEM) water electrolysis. Herein, we report a scalable hydrothermal approach to fabricate ionomer-free integrated electrodes with engineered 1 T-2 H heterophase and defect-rich MoS2 nanosheets (MoS2NSs) in-situ grown onto the carbon fiber paper (CFP). With an ultralow loading of 0.14 mg/cm2, a small voltage of 2.25 V was obtained at 2000 mA/cm2 in a practical cell with Nafion115 membrane, which outperforms all previously reported high-loading non-precious catalyst-based electrodes. Impressively, it shows 44 times higher mass activity than a high-loading and ionomer-mixed MoS2 assemblies electrode. This work builds a bridge from catalyst optimization to electrode fabrication and provides a promising direction for improving intrinsic catalytic activity, electrode conductivity and stability for practical PEM water electrolysis.


Journal ArticleDOI
TL;DR: In this article , the energy levels of a system of neutrinos undergoing collective oscillations were calculated using the quantum Lanczos (QLanczos) algorithm implemented on IBM Q quantum computer hardware.
Abstract: We calculate the energy levels of a system of neutrinos undergoing collective oscillations as functions of an effective coupling strength and radial distance from the neutrino source using the quantum Lanczos (QLanczos) algorithm implemented on IBM Q quantum computer hardware. Our calculations are based on the many-body neutrino interaction Hamiltonian introduced in Patwardhan et al. (Phys Rev D 99, https://doi.org/10.1103/PhysRevD.99.123013 , 2019). We show that the system Hamiltonian can be separated into smaller blocks, which can be represented using fewer qubits than those needed to represent the entire system as one unit, thus reducing the noise in the implementation on quantum hardware. We also calculate transition probabilities of collective neutrino oscillations using a Trotterization method which is simplified before subsequent implementation on hardware. These calculations demonstrate that energy eigenvalues of a collective neutrino system and collective neutrino oscillations can both be computed on quantum hardware with certain simplification to within good agreement with exact results.

Journal ArticleDOI
TL;DR: In this article, a microbial conversion of mixed aromatic substrates has been proposed to solve the problem of converting lignin-derived aromatic compounds to value-added products, which is an abundant and sustainable source of aromatic compounds that can be converted to value added products.

Journal ArticleDOI
01 Feb 2022
TL;DR: By observing the microstructure evolution of Mg-Ga alloy during tensile deformation, it is found that the prismatic and pyramidal slip occur during the tensile process at room temperature, which finally leads to the plenty of dislocation accumulation as discussed by the authors .

Journal ArticleDOI
TL;DR: In this article, the authors compared the thermal stability of monocrystalline and polycrystalline thin films of the equiatomic CrMnFeCoNi alloy during synthesis and after post-deposition annealing.


Journal ArticleDOI
TL;DR: In this article , the authors present the first experimental evidence of radiation-enhanced recrystallization in W and undoped W-Re alloys at nominal temperatures of ~850 °C and ~1100 °C to calculated doses between 0.42 and 0.47 dpa.

Journal ArticleDOI
01 Jan 2022-iScience
TL;DR: In this paper , the feasibility of HER catalytic enhancement in Ni-based materials based on topological engineering from hybrid Weyl states was shown, and sufficient evidences verify that topological charge carriers participate in the HER process, and make the certain surface of NiSi highly active with the Gibbs free energy nearly zero (0.07 eV).

Journal ArticleDOI
TL;DR: In this article , the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced.
Abstract: 2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed.