scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
TL;DR: The research focuses on the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001.
Abstract: Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related to water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy workedmore » as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less

2,921 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the effect of extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets.
Abstract: This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets. For this analysis, we used 16 one-year-long data sets of carbon dioxide exchange measurements from European and US-American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long-term (annual) data sets, does not reflect the short-term temperature sensitivity that is effective when extrapolating from night- to daytime. Specifically, in summer active ecosystems the long

2,881 citations

Journal ArticleDOI
TL;DR: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community as mentioned in this paper, which describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version.
Abstract: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...

2,835 citations

Journal ArticleDOI
30 May 1997-Cell
TL;DR: The Cbfa1 gene is essential for osteoblast differentiation and bone formation, and the C bfa1 heterozygous mouse is a paradigm for a human skeletal disorder.

2,822 citations

Journal ArticleDOI
01 Jan 1999
TL;DR: A new method of finding the fuzzy weights in fuzzy hierarchical analysis which is the direct fuzzification of the original method used by Saaty (1980) in the analytic hierarchy process is presented.
Abstract: We present a new method of finding the fuzzy weights in fuzzy hierarchical analysis which is the direct fuzzification of the original method used by Saaty (1980) in the analytic hierarchy process. We test our new procedure in two cases where there are formulas for the crisp weights. An example is presented where there are five criteria and three alternatives.

2,789 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994