scispace - formally typeset
Search or ask a question
Institution

Ocean University of China

EducationQingdao, China
About: Ocean University of China is a education organization based out in Qingdao, China. It is known for research contribution in the topics: Population & Sea surface temperature. The organization has 27604 authors who have published 27886 publications receiving 440181 citations. The organization is also known as: Zhōngguó Hǎiyáng Dàxué & OUC.


Papers
More filters
Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: The results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling, and the multi-decadal warming trend is very likely to continue with greenhouse gas increase.
Abstract: Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Nina-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

1,427 citations

Journal ArticleDOI
TL;DR: The pre-Rodinia supercontinent was assembled along global-scale 2.1-1.8 Ga collisional orogens and contained almost all of Earth's continental blocks as mentioned in this paper.

1,109 citations

Journal ArticleDOI
TL;DR: The results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China, and suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures.
Abstract: Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

1,027 citations

Journal ArticleDOI
16 May 2008-Science
TL;DR: Although ∼10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions.
Abstract: Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account for the production of up to 1.6 teragrams of nitrous oxide (N2O) per year. Although 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

951 citations

Journal ArticleDOI
TL;DR: Sun et al. as discussed by the authors proposed a set of geometric models for calculating cell biovolume and surface area for 284 phytoplankton genera in China Sea waters.
Abstract: Phytoplankton biovolume can be measured or calculated through the calculation of similar geometric models. A set of geometric models is suggested for calculating cell biovolume and surface area for 284 phytoplankton genera in China Sea waters. Thirty-one geometric shapes have been assigned to estimate the biovolume and surface area of phytoplankton cells. Reductions of error and microscopic effort are also discussed. The model has been verified by its application in the China Seas regions. The software to make these calculations is available at http://www.ouc.edu.cn/csmxy/sunjun/ biovolume.htm.

949 citations


Authors

Showing all 27836 results

NameH-indexPapersCitations
Guangming Zeng1461676100743
Bin Wang126222674364
Simon A. Wilde11839045547
Yusuke Yamauchi117100051685
Xiaoming Li113193272445
Baoshan Xing10982348944
Peng Wang108167254529
Jun Yang107209055257
Shang-Ping Xie10544136437
M. Santosh103134449846
Qi Li102156346762
Wei Liu102292765228
Tao Wang97272055280
Wei Wang95354459660
Peng Li95154845198
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

South China University of Technology
69.4K papers, 1.2M citations

87% related

Dalian University of Technology
71.9K papers, 1.1M citations

87% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Tianjin University
79.9K papers, 1.2M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022515
20213,161
20202,814
20192,480
20182,068