scispace - formally typeset
Search or ask a question
Institution

Ocean University of China

EducationQingdao, China
About: Ocean University of China is a education organization based out in Qingdao, China. It is known for research contribution in the topics: Population & Sea surface temperature. The organization has 27604 authors who have published 27886 publications receiving 440181 citations. The organization is also known as: Zhōngguó Hǎiyáng Dàxué & OUC.


Papers
More filters
Journal ArticleDOI
TL;DR: Three kinds of Schiff bases of carboxymethyl chitosan (CMCTS) were prepared, and their antifungal activities were assessed according to Jasso de Rodríguez's method.

164 citations

Journal ArticleDOI
TL;DR: It is suggested that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia and upregulates similar genes in human cells.

164 citations

Journal ArticleDOI
TL;DR: It is suggested that AOSC can induce cognitive improvement via its antioxidant activity, and significantly reduces the overloading of intracellular free calcium ion, thus suppressing apoptosis induced by H2O2 in human neuroblastoma SH-SY5Y cells.

163 citations

Journal ArticleDOI
TL;DR: It has been demonstrated that a new virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions can reach an unprecedentedly high hit rate, leading to successful identification of 15 potent inhibitors of SARS-CoV-2 main protease (Mpro) from 25 computationally selected drugs under a threshold of Ki = 4 μM.
Abstract: The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.

163 citations

Journal ArticleDOI
TL;DR: In this paper, Li7La3Zr2O12 (LLZO) pellets with a grain size of 100-200 μm and a relative density of 94% were prepared by conventional solid-state processing at a sintering temperature of 1100 °C, 130 °C lower than previously reported.
Abstract: Al-substituted Li7La3Zr2O12 (LLZO) pellets with a grain size of 100–200 μm and a relative density of 94% were prepared by conventional solid-state processing at a sintering temperature of 1100 °C, 130 °C lower than previously reported. Morphological features and the presence of impurities were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Femtosecond Laser Induced Breakdown Spectroscopy (LIBS) was used to visualize the distribution of impurities. The results suggest that chemical composition of the powder cover strongly affects morphology and impurity formation, and that particle size control is critical to densification. These properties, in turn, strongly affect total ionic conductivity and interfacial resistance of the sintered pellets.

163 citations


Authors

Showing all 27836 results

NameH-indexPapersCitations
Guangming Zeng1461676100743
Bin Wang126222674364
Simon A. Wilde11839045547
Yusuke Yamauchi117100051685
Xiaoming Li113193272445
Baoshan Xing10982348944
Peng Wang108167254529
Jun Yang107209055257
Shang-Ping Xie10544136437
M. Santosh103134449846
Qi Li102156346762
Wei Liu102292765228
Tao Wang97272055280
Wei Wang95354459660
Peng Li95154845198
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

South China University of Technology
69.4K papers, 1.2M citations

87% related

Dalian University of Technology
71.9K papers, 1.1M citations

87% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Tianjin University
79.9K papers, 1.2M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022515
20213,161
20202,814
20192,480
20182,068