scispace - formally typeset
Search or ask a question

Showing papers by "Oklahoma State University–Stillwater published in 2017"


Journal ArticleDOI
TL;DR: The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies and provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response.
Abstract: The reliability and validity of traditional taxonomies are limited by arbitrary boundaries between psychopathology and normality, often unclear boundaries between disorders, frequent disorder co-occurrence, heterogeneity within disorders, and diagnostic instability. These taxonomies went beyond evidence available on the structure of psychopathology and were shaped by a variety of other considerations, which may explain the aforementioned shortcomings. The Hierarchical Taxonomy Of Psychopathology (HiTOP) model has emerged as a research effort to address these problems. It constructs psychopathological syndromes and their components/subtypes based on the observed covariation of symptoms, grouping related symptoms together and thus reducing heterogeneity. It also combines co-occurring syndromes into spectra, thereby mapping out comorbidity. Moreover, it characterizes these phenomena dimensionally, which addresses boundary problems and diagnostic instability. Here, we review the development of the HiTOP and the relevant evidence. The new classification already covers most forms of psychopathology. Dimensional measures have been developed to assess many of the identified components, syndromes, and spectra. Several domains of this model are ready for clinical and research applications. The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies. It also provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response. This can greatly improve the utility of the diagnosis of mental disorders. The new classification remains a work in progress. However, it is developing rapidly and is poised to advance mental health research and care significantly as the relevant science matures. (PsycINFO Database Record

1,635 citations


Journal ArticleDOI
TL;DR: An ecological overview of the rare microbial biosphere is provided, including causes of rarity and the impacts of rare species on ecosystem functioning, and how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features is discussed.
Abstract: Rare species are increasingly recognized as crucial, yet vulnerable components of Earth’s ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.

690 citations


Journal ArticleDOI
TL;DR: It is shown that, across multiple tree species, loss of xylem conductivity above 60% is associated with mortality, while carbon starvation is not universal, indicating that evidence supporting carbon starvation was not universal.
Abstract: Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

651 citations


Journal ArticleDOI
TL;DR: The CrackNet, an efficient architecture based on the Convolutional Neural Network, is proposed in this article for automated pavement crack detection on 3D asphalt surfaces with explicit objective of pixel‐perfect accuracy.
Abstract: The CrackNet, an efficient architecture based on the Convolutional Neural Network (CNN), is proposed in this article for automated pavement crack detection on 3D asphalt surfaces with explicit objective of pixel-perfect accuracy. Unlike the commonly used CNN, CrackNet does not have any pooling layers which downsize the outputs of previous layers. CrackNet fundamentally ensures pixel-perfect accuracy using the newly developed technique of invariant image width and height through all layers. CrackNet consists of five layers and includes more than one million parameters that are trained in the learning process. The input data of the CrackNet are feature maps generated by the feature extractor using the proposed line filters with various orientations, widths, and lengths. The output of CrackNet is the set of predicted class scores for all pixels. The hidden layers of CrackNet are convolutional layers and fully connected layers. CrackNet is trained with 1,800 3D pavement images and is then demonstrated to be successful in detecting cracks under various conditions using another set of 200 3D pavement images. The experiment using the 200 testing 3D images showed that CrackNet can achieve high Precision (90.13%), Recall (87.63%) and F-measure (88.86%) simultaneously. Compared with recently developed crack detection methods based on traditional machine learning and imaging algorithms, the CrackNet significantly outperforms the traditional approaches in terms of F-measure. Using parallel computing techniques, CrackNet is programmed to be efficiently used in conjunction with the data collection software.

630 citations


Journal ArticleDOI
TL;DR: A de novo transcriptome is assembled and annotated using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes and finds evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration.

579 citations


Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2845 moreInstitutions (197)
TL;DR: This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
Abstract: During 2015 the ATLAS experiment recorded 3.8 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, respons ...

488 citations


Journal ArticleDOI
Georges Aad1, Alexander Kupco2, P. Davison3, Samuel Webb4  +2888 moreInstitutions (192)
TL;DR: Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS and is exploited to apply a local energy calibration and corrections depending on the nature of the cluster.
Abstract: The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

438 citations


Journal ArticleDOI
TL;DR: A review of the research and development works conducted over the past few decades on carbon fiber reinforced metal matrix composites (CFR-MMC) can be found in this paper.
Abstract: This paper reviews the research and development works conducted over the past few decades on carbon fiber reinforced metal matrix composites (CFR-MMC). The structure and composition of carbon fiber and its bonding to metal matrix have an impact on the properties of the resulting CFR-MMC remarkably. The research efforts on process optimization and utilizing of carbon fibers are discussed in this review. The effect of carbon fiber on structural, physical and mechanical properties of metal matrix composite are studied as well. This review also provide an overview of the research to date on various fabrication methods that is used for production of CFR-MMC.

378 citations


Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2944 moreInstitutions (220)
TL;DR: In this article, a search for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states was conducted using 36 : 1 fb(-1) of proton-proton collision data.
Abstract: A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states. The search uses 36 : 1 fb(-1) of proton-proton collision data, collected at root ...

329 citations


Journal ArticleDOI
TL;DR: The authors proposed a tripartite model suggesting that parents influence children's emotion regulation through three mechanisms: children's observation of parents' emotion regulation, emotion-related parenting practices, and the emotional climate of the family.
Abstract: Regulating emotions well is critical for promoting social and emotional health among children and adolescents. Parents play a prominent role in how children develop emotion regulation. In 2007, Morris et al. proposed a tripartite model suggesting that parents influence children's emotion regulation through three mechanisms: children's observation of parents' emotion regulation, emotion-related parenting practices, and the emotional climate of the family. Over the past decade, we have conducted many studies that support this model, which we summarize here along with other research related to parenting and emotion regulation. We also discuss recent research on the effects of parenting on the neural circuitry involved in emotion regulation and highlight potential directions for research. Finally, we suggest how this research can aid prevention and intervention efforts to help families.

297 citations


Posted Content
TL;DR: A new method using genetic algorithms for evolving the architectures and connection weight initialization values of a deep convolutional neural network to address image classification problems and a novel fitness evaluation method is proposed to speed up the heuristic search with substantially less computational resource.
Abstract: Evolutionary computation methods have been successfully applied to neural networks since two decades ago, while those methods cannot scale well to the modern deep neural networks due to the complicated architectures and large quantities of connection weights. In this paper, we propose a new method using genetic algorithms for evolving the architectures and connection weight initialization values of a deep convolutional neural network to address image classification problems. In the proposed algorithm, an efficient variable-length gene encoding strategy is designed to represent the different building blocks and the unpredictable optimal depth in convolutional neural networks. In addition, a new representation scheme is developed for effectively initializing connection weights of deep convolutional neural networks, which is expected to avoid networks getting stuck into local minima which is typically a major issue in the backward gradient-based optimization. Furthermore, a novel fitness evaluation method is proposed to speed up the heuristic search with substantially less computational resource. The proposed algorithm is examined and compared with 22 existing algorithms on nine widely used image classification tasks, including the state-of-the-art methods. The experimental results demonstrate the remarkable superiority of the proposed algorithm over the state-of-the-art algorithms in terms of classification error rate and the number of parameters (weights).

Journal ArticleDOI
TL;DR: This work resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication, and establishes marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance.
Abstract: Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ~1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.

Proceedings ArticleDOI
06 Mar 2017
TL;DR: In this article, the authors survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition and show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization.
Abstract: We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that ratio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health and suggests some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
Abstract: Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.

Journal ArticleDOI
TL;DR: This work discusses how water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.
Abstract: How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and in...

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2906 moreInstitutions (214)
TL;DR: In this paper, Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016.
Abstract: Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated lumino ...

Journal ArticleDOI
TL;DR: Compared with cigarettes, G2 and G3 e-cigarettes resulted in significantly lower levels of exposure to a potent lung carcinogen and cardiovascular toxicant and have significant implications for understanding the addiction potential of these devices and their viability/suitability as aids to smoking cessation.
Abstract: Introduction Electronic cigarettes’ (e-cigarettes) viability as a public health strategy to end smoking will likely be determined by their ability to mimic the pharmacokinetic profile of a cigarette while also exposing users to significantly lower levels of harmful/potentially harmful constituents (HPHCs). The present study examined the nicotine delivery profile of third- (G3) versus second-generation (G2) e-cigarette devices and their users9 exposure to nicotine and select HPHCs compared with cigarette smokers. Methods 30 participants (10 smokers, 9 G2 and 11 G3 users) completed baseline questionnaires and provided exhaled carbon monoxide (eCO), saliva and urine samples. Following a 12-hour nicotine abstinence, G2 and G3 users completed a 2-hour vaping session (ie, 5 min, 10-puff bout followed by ad libitum puffing for 115 min). Blood samples, subjective effects, device characteristics and e-liquid consumption were assessed. Results Smokers, G2 and G3 users had similar baseline levels of cotinine, but smokers had 4 and 7 times higher levels of eCO (p Discussion Under normal use conditions, both G2 and G3 devices deliver cigarette-like amounts of nicotine, but G3 devices matched the amount and speed of nicotine delivery of a conventional cigarette. Compared with cigarettes, G2 and G3 e-cigarettes resulted in significantly lower levels of exposure to a potent lung carcinogen and cardiovascular toxicant. These findings have significant implications for understanding the addiction potential of these devices and their viability/suitability as aids to smoking cessation.

Journal ArticleDOI
TL;DR: A set of new temperature response functions are derived that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes, leading to higher skill of crop yield projections.
Abstract: Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

17 Dec 2017
TL;DR: In this article, the authors identify the kinds of biases and weaknesses that are introduced into designs by the decision heuristics employed and suggest a more formal search and selection process that enables designers to be more discriminating when they pinch policy ideas from other contexts.
Abstract: Policy design,, whether conceptualized as a verb referring to the process of formulating policy ideas,, or as a noun describing the logic through which policy intends to achieve its objectives,, remains relatively uncharted territory.. This paper reviews what we know about how policy designs emerge,, and identifies the kinds of biases and weaknesses that are introduced into designs by the decision heuristics employed.. Theories of policy invention and expert decision--mmaking suggest that individuals search through large amounts of relevant information stored in memory,, reason by analogies,, make comparisons,, and either copy or simulate patterns of information.. Policy scholars may contribute to improved policy design by making more explicit the biases introduced through reliance on decision heuristics,, and by suggesting a more formal,, self conscious search and selection process that enables designers to be more discriminating when they pinch policy ideas from other contexts.. To perform this task,, comparative policy analysis is needed in which common elements that exist in virtually all policies are identified and the underlying structural logic of the policies is made explicit.. In this paperwe set forth generic elements found in policies,, describe and compare some of the more common design patterns,, and discuss the circumstances where these may be inappropriately copied or borrowed,, thereby thwarting the effectiveness of the policy.

Journal ArticleDOI
01 Dec 2017-PeerJ
TL;DR: New functionality in the second major release of PlantCV includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
Abstract: Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

Journal ArticleDOI
TL;DR: The fundamental forces involved during the electrospinning process are described providing insight to the factors to be considered to form fibers, and various modeling efforts on the drug release profiles are summarized.

Journal ArticleDOI
TL;DR: The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds and the potential applications, challenges, and future trends are discussed in detail.

Journal ArticleDOI
TL;DR: In this article, a blind deconvolution network is proposed for large eddy simulations, where the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel.
Abstract: We present a single-layer feed-forward artificial neural network architecture trained through a supervised learning approach for the deconvolution of flow variables from their coarse-grained computations such as those encountered in large eddy simulations. We stress that the deconvolution procedure proposed in this investigation is blind, i.e. the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel. This may be conceptually contrasted to the celebrated approximate deconvolution approaches where a filter shape is predefined for an iterative deconvolution process. We demonstrate that the proposed blind deconvolution network performs exceptionally well in the a priori testing of two-dimensional Kraichnan, three-dimensional Kolmogorov and compressible stratified turbulence test cases, and shows promise in forming the backbone of a physics-augmented data-driven closure for the Navier–Stokes equations.

Journal ArticleDOI
TL;DR: This paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape the continued use of this material.
Abstract: In a book published in 1906, Richard Meade outlined the history of portland cement up to that point1. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20th century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?

Journal ArticleDOI
TL;DR: In this paper, the effects of N and P availability on stoichiometry and genomic traits of organisms, which can influence plant and animal abundances; trophic interactions and population dynamics; and ecosystem dynamics and productivity of agricultural crops.
Abstract: Nitrogen (N) and/or phosphorus (P) availability can limit growth of primary producers across most of the world’s aquatic and terrestrial ecosystems. These constraints are commonly overcome in agriculture by applying fertilizers to improve yields. However, excessive anthropogenic N and P inputs impact natural environments and have far-reaching ecological and evolutionary consequences, from individual species up to entire ecosystems. The extent to which global N and P cycles have been perturbed over the past century can be seen as a global fertilization experiment with significant redistribution of nutrients across different ecosystems. Here we explore the effects of N and P availability on stoichiometry and genomic traits of organisms, which, in turn, can influence: i) plant and animal abundances; ii) trophic interactions and population dynamics; and iii) ecosystem dynamics and productivity of agricultural crops. We articulate research priorities for a deeper understanding of how bioavailable N and P move through the environment and exert their ultimate impacts on biodiversity and ecosystem services.

Book ChapterDOI
01 Jan 2017
TL;DR: Rosbridge provides a simple, socket-based programmatic access to robot interfaces and algorithms provided by ROS, the open-source “Robot Operating System”, the current state-of-the-art in robot middleware.
Abstract: We present rosbridge, a middleware abstraction layer which provides robotics technology with a standard, minimalist applications development framework accessible to applications programmers who are not themselves roboticists. Rosbridge provides a simple, socket-based programmatic access to robot interfaces and algorithms provided (for now) by ROS, the open-source “Robot Operating System”, the current state-of-the-art in robot middleware. In particular, it facilitates the use of web technologies such as Javascript for the purpose of broadening the use and usefulness of robotic technology. We demonstrate potential applications in the interface design, education, human-robot interaction and remote laboratory environments.

Journal ArticleDOI
TL;DR: Silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths.
Abstract: Silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

Journal ArticleDOI
TL;DR: In this article, a broad review of research and field experiences related to well integrity is presented, which can be classified based on chemical, mechanical, and operational factors such as pressure, temperature, chemical changes, corrosion, and in-situ conditions.

Journal ArticleDOI
TL;DR: In this article, the authors used CiteSpace to analyze investigations published in three top journals of hospitality research: International Journal of Hospitality Management (2008-2014), Cornell Hospitality Quarterly (2008, 2014), and International Journal for Contemporary Hospitality management (2009, 2014).

Journal ArticleDOI
TL;DR: In this article, the authors explored one set of pathways leading from developer passion to performance, identifying self-regulatory mode (locomotion and assessment) and grit as significant conduits of this relationship.