scispace - formally typeset
Search or ask a question
Institution

Oklahoma State University–Stillwater

EducationStillwater, Oklahoma, United States
About: Oklahoma State University–Stillwater is a education organization based out in Stillwater, Oklahoma, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 18267 authors who have published 36743 publications receiving 1107500 citations. The organization is also known as: Oklahoma State University & OKState.


Papers
More filters
Journal ArticleDOI
TL;DR: The National Beef quality Audit-1995 was conducted to evaluate the progress of the beef industry since the time of the National Beef Quality Audit-1991 in improving quality and consistency of beef.
Abstract: The National Beef Quality Au- dit-1995 was conducted to evaluate the progress of the beef industry since the time of the National Beef Quality Audit-1991 in improving quality and con- sistency of beef. Nine plants were assigned for auditing to Colorado State University, Oklahoma State University, and Texas A&M University. Person- nel from each institution visited three of their nine plants twice, once in the spring/summer and once in the fall/winter. Data were collected on 50% of each lot on the slaughter floor and 10% in the cooler during a single day's production (one or two shifts, as appropri- ate). Of the cattle audited on the slaughter floor, 47.7% had no brands, 3.0% had a shoulder brand,

193 citations

Journal ArticleDOI
TL;DR: The results confirm earlier reports that morphologically normal bovine blastocysts developed in vivo are often mixoploids, and show that in vitro-produced bovines blastocyst have a high rate of mixoploidy.
Abstract: Fluorescence in situ hybridization with chromosome 6- and chromosome 7-specific probes was used to assess the extent of chromosome abnormalities in developing bovine blastocysts at 7-8 days after insemination in vivo or in vitro. Interphase nuclei (N = 10 946) were analyzed from 151 blastocysts produced in vitro and from 28 blastocysts recovered from superovulated animals. This revealed that 72% (109 of 151) of the in vitro-produced blastocysts were mixoploid, i.e., were a mixture of normal, diploid, and polyploid cells. However, only a small fraction of the total number of cells were chromosomally abnormal. Of the mixoploid blastocysts, 83% (91 of 109) contained less than 10% polyploid cells, 13% (14 of 109) contained 11-25% polyploid cells, and only 4% (4 of 109) of the blastocysts had more than 25% polyploid cells per blastocyst. In contrast, a significantly lower proportion (25%) of mixoploidy was found in 28 bovine blastocysts developed in vivo (p < 0.0001). All of the mixoploid blastocysts that had developed in vivo contained less than 10% polyploid cells. No entirely aneuploid blastocysts, i. e., blastocysts in which all cells had the same type of chromosome abnormality, were found in either of the groups. Taken together, the most common chromosome abnormalities observed were diploid-triploid mixoploidies and diploid-tetraploid mixoploidies. Thus, our results confirm earlier reports that morphologically normal bovine blastocysts developed in vivo are often mixoploids. We further show that in vitro-produced bovine blastocysts have a high rate of mixoploidy. Although the difference in mixoploidy rate detected in this study may not be general, it is an interesting phenomenon for further studies.

193 citations

Journal ArticleDOI
TL;DR: The cloning of SIN1 is reported, and its identity to the CAF (CARPEL FACTORY) gene important for normal flower morphogenesis and to the SUS1 (SUSPENSOR1) gene essential for embryogenesis is demonstrated, suggesting that maternal Sin1/SUS1/CAF functions early in Arabidopsis development, presumably through posttranscriptional regulation of specific mRNA molecules.
Abstract: The importance of maternal cells in controlling early embryogenesis is well understood in animal development, yet in plants the precise role of maternal cells in embryogenesis is unclear. We demonstrated previously that maternal activity of the SIN1 (SHORT INTEGUMENTS1) gene of Arabidopsis is essential for embryo pattern formation and viability, and that its postembryonic activity is required for several processes in reproductive development, including flowering time control and ovule morphogenesis. Here, we report the cloning of SIN1, and demonstrate its identity to the CAF (CARPEL FACTORY) gene important for normal flower morphogenesis and to the SUS1 (SUSPENSOR1) gene essential for embryogenesis. SIN1/SUS1/CAF has sequence similarity to the Drosophila melanogaster gene Dicer, which encodes a multidomain ribonuclease specific for double-stranded RNA, first identified by its role in RNA silencing. The Dicer protein is essential for temporal control of development in animals, through the processing of small RNA hairpins that in turn inhibit the translation of target mRNAs. Structural modeling of the wild-type and sin1 mutant proteins indicates that the RNA helicase domain of SIN1/SUS1/CAF is important for function. The mRNA was detected in floral meristems, ovules, and early embryos, consistent with the mutant phenotypes. A 3.3-kb region 5' of the SIN1/SUS1/CAF gene shows asymmetric parent-of-origin activity in the embryo: It confers transcriptional activation of a reporter gene in early embryos only when transmitted through the maternal gamete. These results suggest that maternal SIN1/SUS1/CAF functions early in Arabidopsis development, presumably through posttranscriptional regulation of specific mRNA molecules.

193 citations

Journal ArticleDOI
TL;DR: Improved digestion of lactose was not due to hydrolysis of the lactose prior to consumption, which indicated that the beneficial effect must have occurred in the digestive tract after consumption of milk containing L. acidophilus.

193 citations

Patent
30 Aug 2007
TL;DR: In this paper, a novel clostridia bacterial species (Clostridium ragsdalei, ATCC BAA-622 and/or PTA-7826, 'P11') is provided.
Abstract: A novel clostridia bacterial species (Clostridium ragsdalei, ATCC BAA-622 and/or PTA-7826, 'P11') is provided. P11 is capable of synthesizing, from waste gases, products which are useful as biofuel. In particular, P11 can convert CO to ethanol. Thus, this novel bacterium transforms waste gases (e.g. syngas and refinery wastes) into useful products. P11 also catalyzes the production of acetate.

193 citations


Authors

Showing all 18403 results

NameH-indexPapersCitations
Gerald I. Shulman164579109520
James M. Tiedje150688102287
Robert J. Sternberg149106689193
Josh Moss139101989255
Brad Abbott137156698604
Itsuo Nakano135153997905
Luis M. Liz-Marzán13261661684
Flera Rizatdinova130124289525
Bernd Stelzer129120981931
Alexander Khanov129121987089
Dugan O'Neil128100080700
Michel Vetterli12890176064
Josu Cantero12684673616
Nicholas A. Kotov12357455210
Wei Chen122194689460
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Purdue University
163.5K papers, 5.7M citations

93% related

University of California, Davis
180K papers, 8M citations

93% related

University of Florida
200K papers, 7.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202336
2022254
20211,902
20201,780
20191,633
20181,529