scispace - formally typeset
Search or ask a question

Showing papers by "Oregon State University published in 2015"


Journal ArticleDOI
23 Nov 2015-Nature
TL;DR: It is argued that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils, and instead soil organic matter is a continuum of progressively decomposing organic compounds.
Abstract: Instead of containing stable and chemically unique ‘humic substances’, as has been widely accepted, soil organic matter is a mixture of progressively decomposing organic compounds; this has broad implications for soil science and its applications. The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon–climate interactions and land management. Soil organic matter contains a large portion of the world's carbon and plays an important role in maintaining productive soils and water quality. Nevertheless, a consensus on the nature of soil organic matter is lacking. Johannes Lehmann and Markus Kleber argue that soil organic matter should no longer be seen as large and persistent, chemically unique substances, but as a continuum of progressively decomposing organic compounds.

2,206 citations


Journal ArticleDOI
09 Jul 2015-PLOS ONE
TL;DR: The substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases, demonstrating the significant role of carbonate rocks in promoting diversity.
Abstract: Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰ to +10.0‰, and were significantly heavier than carbonate δ13Corg (mean = -33.83‰), which ranged from -74.4‰ to -20.6‰. Invertebrates on carbonates had average δ13C (per rock) = -31.0‰ (range -18.5‰ to -46.5‰) and δ15N = 5.7‰ (range -4.5‰ to +13.4‰). Average δ13C values did not differ between active and inactive sites; carbonate fauna from both settings depend on chemosynthesis-based nutrition. Community metrics reflecting trophic diversity (SEAc, total Hull Area, ranges of δ13C and δ15N) and species packing (mean distance to centroid, nearest neighbor distance) also did not vary as a function of seepage activity or site. However, distinct isotopic signatures were observed among related, co-occurring species of gastropods and polychaetes, reflecting intense microbial resource partitioning. Overall, the substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases. The macrofauna in these ecosystems remain largely overlooked in most surveys, but are major contributors to biodiversity of chemosynthetic ecosystems and the deep sea in general.

1,685 citations


Journal ArticleDOI
TL;DR: To improve the performance of carbon K-ion anodes, this work synthesized a nongraphitic soft carbon that exhibits cyclability and rate capability much superior to that of graphite.
Abstract: We for the first time report electrochemical potassium insertion in graphite in a nonaqueous electrolyte, which can exhibit a high reversible capacity of 273 mAh/g Ex situ XRD studies confirm that KC36, KC24, and KC8 sequentially form upon potassiation, whereas depotassiation recovers graphite through phase transformations in an opposite sequence Graphite shows moderate rate capability and relatively fast capacity fading To improve the performance of carbon K-ion anodes, we synthesized a nongraphitic soft carbon that exhibits cyclability and rate capability much superior to that of graphite This work may open up a new paradigm toward rechargeable K-ion batteries

1,423 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the Na(+) intercalation pseudocapacitance in TiO2/graphene nanocomposites enables high-rate capability and long cycle life in a sodium-ion battery.
Abstract: Sodium-ion batteries are emerging as a highly promising technology for large-scale energy storage applications. However, it remains a significant challenge to develop an anode with superior long-term cycling stability and high-rate capability. Here we demonstrate that the Na(+) intercalation pseudocapacitance in TiO2/graphene nanocomposites enables high-rate capability and long cycle life in a sodium-ion battery. This hybrid electrode exhibits a specific capacity of above 90 mA h g(-1) at 12,000 mA g(-1) (∼36 C). The capacity is highly reversible for more than 4,000 cycles, the longest demonstrated cyclability to date. First-principle calculations demonstrate that the intimate integration of graphene with TiO2 reduces the diffusion energy barrier, thus enhancing the Na(+) intercalation pseudocapacitive process. The Na-ion intercalation pseudocapacitance enabled by tailor-deigned nanostructures represents a promising strategy for developing electrode materials with high power density and long cycle life.

979 citations


Journal ArticleDOI
27 Feb 2015-Science
TL;DR: Systems integration for global sustainability is poised for more rapid development, and transformative changes aimed at connecting disciplinary silos are needed to sustain an increasingly telecoupled world.
Abstract: Global sustainability challenges, from maintaining biodiversity to providing clean air and water, are closely interconnected yet often separately studied and managed. Systems integration—holistic approaches to integrating various components of coupled human and natural systems—is critical to understand socioeconomic and environmental interconnections and to create sustainability solutions. Recent advances include the development and quantification of integrated frameworks that incorporate ecosystem services, environmental footprints, planetary boundaries, human-nature nexuses, and telecoupling. Although systems integration has led to fundamental discoveries and practical applications, further efforts are needed to incorporate more human and natural components simultaneously, quantify spillover systems and feedbacks, integrate multiple spatial and temporal scales, develop new tools, and translate findings into policy and practice. Such efforts can help address important knowledge gaps, link seemingly unconnected challenges, and inform policy and management decisions.

881 citations


Book ChapterDOI
TL;DR: An overview of the current knowledge on mineral-organic associations can be found in this article, where the authors identify key questions and future research needs, as well as a survey of the existing research work.
Abstract: Minerals and organic matter (OM) may form intricate associations via myriad interactions. In soils, the associations of OM with mineral surfaces are mainly investigated because of their role in determining the long-term retention of OM. OM “must decay in order to release the energy and nutrients that drive live processes all over the planet” ( Janzen, 2006 ). Thus, the processes and mechanisms that retain OM in soil are a central concern to very different branches of environmental research. An agronomist may want to synchronize periods of high nutrient and energy release with the growth stages of a crop. An environmental chemist may wish to either immobilize an organic soil contaminant or enhance its decomposition into less harmful metabolites, while climate scientists need to understand the processes that mediate the production of potent greenhouse gases from decomposing OM. Associations of OM with pedogenic minerals (henceforth termed mineral–organic associations (MOAs)) are known to be key controls in these and many other processes. Here we strive to present an overview of the current knowledge on MOAs and identify key questions and future research needs.

818 citations


Journal ArticleDOI
TL;DR: The rate of large herbivore decline suggests that ever-larger swaths of the world will soon lack many of the vital ecological services these animals provide, resulting in enormous ecological and social costs.
Abstract: Large wild herbivores are crucial to ecosystems and human societies. We highlight the 74 largest terrestrial herbivore species on Earth (body mass ≥100 kg), the threats they face, their important and often overlooked ecosystem effects, and the conservation efforts needed to save them and their predators from extinction. Large herbivores are generally facing dramatic population declines and range contractions, such that ~60% are threatened with extinction. Nearly all threatened species are in developing countries, where major threats include hunting, land-use change, and resource depression by livestock. Loss of large herbivores can have cascading effects on other species including large carnivores, scavengers, mesoherbivores, small mammals, and ecological processes involving vegetation, hydrology, nutrient cycling, and fire regimes. The rate of large herbivore decline suggests that ever-larger swaths of the world will soon lack many of the vital ecological services these animals provide, resulting in enormous ecological and social costs.

797 citations


Journal ArticleDOI
TL;DR: A meta-analysis of data from eight published RNAi screens and integrated with three protein interaction datasets revealed a functionally validated biochemical landscape of the influenza-host interface, which illuminates a viral-host network of high-confidence human proteins that are essential for influenza A virus replication.

795 citations


Journal ArticleDOI
TL;DR: Evidence indicates that motor competence is positively associated with perceived competence and multiple aspects of health, but questions related to the increased strength of associations across time and antecedent/consequent mechanisms remain.
Abstract: In 2008, Stodden and colleagues took a unique developmental approach toward addressing the potential role of motor competence in promoting positive or negative trajectories of physical activity, health-related fitness, and weight status. The conceptual model proposed synergistic relationships among physical activity, motor competence, perceived motor competence, health-related physical fitness, and obesity with associations hypothesized to strengthen over time. At the time the model was proposed, limited evidence was available to support or refute the model hypotheses. Over the past 6 years, the number of investigations exploring these relationships has increased significantly. Thus, it is an appropriate time to examine published data that directly or indirectly relate to specific pathways noted in the conceptual model. Evidence indicates that motor competence is positively associated with perceived competence and multiple aspects of health (i.e., physical activity, cardiorespiratory fitness, muscular strength, muscular endurance, and a healthy weight status). However, questions related to the increased strength of associations across time and antecedent/consequent mechanisms remain. An individual’s physical and psychological development is a complex and multifaceted process that synergistically evolves across time. Understanding the most salient factors that influence health and well-being and how relationships among these factors change across time is a critical need for future research in this area. This knowledge could aid in addressing the declining levels of physical activity and fitness along with the increasing rates of obesity across childhood and adolescence.

759 citations


Journal ArticleDOI
TL;DR: Why ecosystem service information has yet to fundamentally change decision-making is explored and a path forward is suggested that emphasizes developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being.
Abstract: The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.

720 citations


Journal ArticleDOI
TL;DR: It is concluded that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and dispersal capabilities; as well as applied studies of alternative, cost-effective management techniques to complement insecticide use within the integrated pest management framework.
Abstract: The Asian vinegar fly Drosophila suzukii (spotted wing Drosophila (SWD)) has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, we explore common themes in the invasion biology of SWD by examining (1) its biology and current pest status in endemic and recently invaded regions; (2) current efforts and future research needs for the development of predictive models for its geographic expansion; and (3) prospects for both natural and classical (=importation) biological control of SWD in invaded habitats, with emphasis on the role of hymenopteran parasitoids. We conclude that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and dispersal capa- bilities; as well as applied studies of alternative, cost-ef- fective management techniques to complement insecticide use within the integrated pest management framework. Finally, we emphasize that outreach efforts are critical to effective SWD management by highlighting successful

Proceedings ArticleDOI
07 Dec 2015
TL;DR: It is demonstrated that a classical MHT implementation from the 90's can come surprisingly close to the performance of state-of-the-art methods on standard benchmark datasets, and it is shown that appearance models can be learned efficiently via a regularized least squares framework.
Abstract: This paper revisits the classical multiple hypotheses tracking (MHT) algorithm in a tracking-by-detection framework. The success of MHT largely depends on the ability to maintain a small list of potential hypotheses, which can be facilitated with the accurate object detectors that are currently available. We demonstrate that a classical MHT implementation from the 90's can come surprisingly close to the performance of state-of-the-art methods on standard benchmark datasets. In order to further utilize the strength of MHT in exploiting higher-order information, we introduce a method for training online appearance models for each track hypothesis. We show that appearance models can be learned efficiently via a regularized least squares framework, requiring only a few extra operations for each hypothesis branch. We obtain state-of-the-art results on popular tracking-by-detection datasets such as PETS and the recent MOT challenge.

Book ChapterDOI
26 Oct 2015
TL;DR: Dick et al. as mentioned in this paper discussed soil enzyme activities as a potential biochemical/biological indicator of soil quality and found that soil biological parameters may hold potential as early and sensitive indicators of soil ecological stress or restoration.
Abstract: With the increasing pressure to produce more food, fiber, and fuel to meet world demands on a limited land area, there is an unprecedented need to address global concerns about soil degradation. Understanding the underlying biological processes in tandem with identification of early warning indicators of ecosystem stress is needed to provide strategies and approaches for land resource managers and policymakers to promote long-term ecosystem sustainability. Biological and biochemically mediated processes in soils are fundamental to terrestrial ecosystem function. Ultimately, all members of the food web are dependent on the soil as a source of nutrients, and for degradation and cycling of complex organic compounds. Primary decomposers of organic matter provide energy that supports the activities of organisms from a number of trophic levels in soils. Historically, chemical and physical properties have been used as crude measures of soil productivity. Most notably, determination of soil organic matter has been related to general soil tilth. Soil organic matter changes very slowly, and therefore, many years may be required to measure changes resulting from perturbations. However, there is growing evidence that soil biological parameters may hold potential as early and sensitive indicators of soil ecological stress or restoration (Dick, 1992; Dick & Tabatabai, 1992). In Chapter 5 (this book) information is provided on soil quality in relation to soil microorganisms. In this chapter, soil enzyme activities will be discussed as a potential biochemical/biological indicator of soil quality.

Journal ArticleDOI
TL;DR: In this article, it was shown that oxalic acid (a common exudate) releases organic compounds from protective mineral associations, which can lead to loss of soil carbon.
Abstract: Climate change enhances root exudation of organic compounds into soils and can lead to loss of soil carbon. Research now shows that oxalic acid (a common exudate) releases organic compounds from protective mineral associations.

Journal ArticleDOI
Marnix H. Medema1, Marnix H. Medema2, Renzo Kottmann2, Pelin Yilmaz2  +161 moreInstitutions (84)
TL;DR: This work proposes the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard, to facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters.
Abstract: A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.

Journal ArticleDOI
TL;DR: Several significant extensions to poppr are provided including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies.
Abstract: To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies.

Journal ArticleDOI
TL;DR: This work proposes an alternative perspective for sodiation of hard carbon that consists of Na-ion storage at defect sites, by intercalation and last via pore-filling.
Abstract: Nongraphitizable carbon, also known as hard carbon, is considered one of the most promising anodes for the emerging Na-ion batteries. The current mechanistic understanding of Na-ion storage in hard carbon is based on the “card-house” model first raised in the early 2000s. This model describes that Na-ion insertion occurs first through intercalation between graphene sheets in turbostratic nanodomains, followed by Na filling of the pores in the carbon structure. We tried to test this model by tuning the sizes of turbostratic nanodomains but revealed a correlation between the structural defects and Na-ion storage. Based on our experimental data, we propose an alternative perspective for sodiation of hard carbon that consists of Na-ion storage at defect sites, by intercalation and last via pore-filling.

Journal ArticleDOI
TL;DR: A survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance received 263 votes from 62 scientists in 15 countries for a total of 33 species and the Top 10 species are provided.
Abstract: Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: The challenges of understanding the role protists play in geochemical cycling in the oceans are reviewed, and researchers must bring the conceptual framework of systems biology into bigger “ecosystems biology” models that broadly capture the geochemical activities of interacting plankton networks.
Abstract: BACKGROUND Marine ecosystems are composed of a diverse array of life forms, the majority of which are unicellular—archaea, bacteria, and eukaryotes. The power of these microbes to process carbon, shape Earth’s atmosphere, and fuel marine food webs has been established over the past 40 years. The marine biosphere is responsible for approximately half of global primary production, rivaling that of land plants. Unicellular eukaryotes (protists) are major contributors to this ocean productivity. In addition to photosynthetic growth, protists exhibit a range of other trophic modes, including predation, mixotrophy (a combination of photosynthetic and predatory-based nutrition), parasitism, symbiosis, osmotrophy, and saprotrophy (wherein extracellular enzymes break down organic matter to smaller compounds that are then transported into the cell by osmotrophy). ADVANCES Sensitive field approaches have illuminated the enormous diversity of protistan life (much of it uncultured) and, coupled with activity measurements, are leading to hypotheses about their ecological roles. In parallel, large-scale sequencing projects are providing fundamental advances in knowledge of genome/gene composition, especially among photosynthetic lineages, many of which are complex amalgams derived from multiple endosymbiotic mergers. Marine protists have yielded insight into basic biology, evolution, and molecular machineries that control organismal responses to the environment. These studies reveal tightly controlled signaling and transcriptional regulation as well as responses to limitation of resources such as iron, nitrogen, and vitamins, and offer understanding of animal and plant evolution. With the formulation of better computational approaches, hypotheses about interactions and trophic exchanges are becoming more exact and modelers more assertive at integrating different data types. At the same time, the impacts of climate change are being reported in multiple systems, of which polar environments are the touchstone of change. OUTLOOK Driven by the need to translate the biology of cells into processes at global scales, researchers must bring the conceptual framework of systems biology into bigger “ecosystems biology” models that broadly capture the geochemical activities of interacting plankton networks. Existing data show that protists are major components of marine food webs, but deducing and quantifying their ecosystem linkages and the resulting influences on carbon cycling is difficult. Genome-based functional predictions are complicated by the importance of cellular structures and flexible behaviors in protists, which are inherently more difficult to infer than the biochemical pathways typically studied in prokaryotes. Alongside the plethora of genes of unknown function, manipulable genetic systems are rare for marine protists. The development of genetic systems and gene editing for diverse, ecologically important lineages, as well as innovative tools for preserving microbe-microbe interactions during sampling, for visual observation, and for quantifying biogeochemical transformations, are critical but attainable goals. These must be implemented in both field work and laboratory physiology studies that examine multiple environmental factors. Expanding genome functional predictions to identify the molecular underpinnings of protistan trophic modes and realistically constrain metabolism will position the field to build reliable cell systems biology models and link these to field studies. By factoring in true complexities, we can capture key elements of protistan interactions for assimilation into more predictive global carbon cycle models.

Journal ArticleDOI
10 Jul 2015-Science
TL;DR: This work concludes that during recent interglacial periods, small increases in global mean temperature and just a few degrees of polar warming relative to the preindustrial period resulted in ≥6 m of GMSL rise, which is currently not possible to make a precise estimate of peak G MSL during the Pliocene.
Abstract: BACKGROUND:Although thermal expansion of seawater and melting of mountain glaciers have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions to GMSL rise under future warming. To better constrain polarice-sheetresponse to warmer temperatures, we draw on evidence from in- terglacial periods in the geologic record that ex- perienced warmer polar temperatures and higher GMSLs than present. Coastal records of sea level from these previous warm periods dem- onstrate geographic variability because of the influence of several geophysical processes that operate across a range of magnitudes and time scales. Inferring GMSL and ice- volume changes from these reconstructions is nontrivial and generally requires the use of geophysical models. ADVANCES: Interdisciplinary studies of geo- logic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise. Advances in our understanding of polar ice-sheet response to warmer climates have been made through an increase in the number and geographic distribution of sea- level reconstructions, better ice-sheet constraints, and the recognition that several geophysical processes cause spatially complex patterns in sea level. In particular, accounting for glacial isostatic processes helps to decipher spatial variability in coastal sea-level records and has reconciled a number of site-specific sea-level reconstructions for warm periods that have oc- curred within the past several hundred thou- sand years. This enables us to infer that during recent interglacial periods, small increases in

Journal ArticleDOI
TL;DR: Indonesian mangrove carbon stocks are estimated to be 1,083 ± 378 MgC ha−1 as mentioned in this paper, which is a large amount of carbon stored in mangroves.
Abstract: Indonesian mangrove carbon stocks are estimated to be 1,083 ± 378 MgC ha−1. In the past three decades Indonesia has lost 40% of its 2.9 Mha of mangroves; this is estimated to have resulted in annual CO2-equivalent emissions of 0.07–0.21 Pg. Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha−1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 ± 378 MgC ha−1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

Journal ArticleDOI
10 Jul 2015-Science
TL;DR: Two large-scale flux-partitioning approaches were combined to quantify evapotranspiration subcomponents and the hydrologic connectivity of bound, plant-available soil waters with more mobile surface waters.
Abstract: Continental precipitation not routed to the oceans as runoff returns to the atmosphere as evapotranspiration. Partitioning this evapotranspiration flux into interception, transpiration, soil evaporation, and surface water evaporation is difficult using traditional hydrological methods, yet critical for understanding the water cycle and linked ecological processes. We combined two large-scale flux-partitioning approaches to quantify evapotranspiration subcomponents and the hydrologic connectivity of bound, plant-available soil waters with more mobile surface waters. Globally, transpiration is 64 ± 13% (mean ± 1 standard deviation) of evapotranspiration, and 65 ± 26% of evaporation originates from soils and not surface waters. We estimate that 38 ± 28% of surface water is derived from the plant-accessed soil water pool. This limited connectivity between soil and surface waters fundamentally structures the physical and biogeochemical interactions of water transiting through catchments.

Journal ArticleDOI
Maanasa Raghavan1, Matthias Steinrücken2, Matthias Steinrücken3, Kelley Harris2, Stephan Schiffels4, Simon Rasmussen5, Michael DeGiorgio6, Anders Albrechtsen1, Cristina Valdiosera7, Cristina Valdiosera1, María C. Ávila-Arcos8, María C. Ávila-Arcos1, Anna-Sapfo Malaspinas1, Anders Eriksson9, Anders Eriksson10, Ida Moltke1, Mait Metspalu11, Mait Metspalu12, Julian R. Homburger8, Jeffrey D. Wall13, Omar E. Cornejo14, J. Víctor Moreno-Mayar1, Thorfinn Sand Korneliussen1, Tracey Pierre1, Morten Rasmussen8, Morten Rasmussen1, Paula F. Campos1, Paula F. Campos15, Peter de Barros Damgaard1, Morten E. Allentoft1, John Lindo16, Ene Metspalu11, Ene Metspalu12, Ricardo Rodríguez-Varela17, Josefina Mansilla, Celeste Henrickson18, Andaine Seguin-Orlando1, Helena Malmström19, Thomas W. Stafford20, Thomas W. Stafford1, Suyash Shringarpure8, Andrés Moreno-Estrada8, Monika Karmin12, Monika Karmin11, Kristiina Tambets12, Anders Bergström4, Yali Xue4, Vera Warmuth21, Andrew D. Friend10, Joy S. Singarayer22, Paul J. Valdes23, Francois Balloux, Ilán Leboreiro, Jose Luis Vera, Héctor Rangel-Villalobos24, Davide Pettener25, Donata Luiselli25, Loren G. Davis26, Evelyne Heyer27, Christoph P. E. Zollikofer28, Marcia S. Ponce de León28, Colin Smith7, Vaughan Grimes29, Vaughan Grimes30, Kelly-Anne Pike29, Michael Deal29, Benjamin T. Fuller31, Bernardo Arriaza32, Vivien G. Standen32, Maria F. Luz, Francois Ricaut33, Niede Guidon, Ludmila P. Osipova34, Ludmila P. Osipova35, Mikhail Voevoda34, Mikhail Voevoda35, Olga L. Posukh35, Olga L. Posukh34, Oleg Balanovsky, Maria Lavryashina36, Yuri Bogunov, Elza Khusnutdinova35, Elza Khusnutdinova37, Marina Gubina, Elena Balanovska, Sardana A. Fedorova38, Sergey Litvinov12, Sergey Litvinov35, Boris Malyarchuk35, Miroslava Derenko35, M. J. Mosher39, David Archer40, Jerome S. Cybulski41, Jerome S. Cybulski42, Barbara Petzelt, Joycelynn Mitchell, Rosita Worl, Paul Norman8, Peter Parham8, Brian M. Kemp14, Toomas Kivisild12, Toomas Kivisild10, Chris Tyler-Smith4, Manjinder S. Sandhu43, Manjinder S. Sandhu4, Michael H. Crawford44, Richard Villems11, Richard Villems12, David Glenn Smith45, Michael R. Waters46, Ted Goebel46, John R. Johnson47, Ripan S. Malhi16, Mattias Jakobsson19, David J. Meltzer48, David J. Meltzer1, Andrea Manica10, Richard Durbin4, Carlos Bustamante8, Yun S. Song2, Rasmus Nielsen2, Eske Willerslev1 
21 Aug 2015-Science
TL;DR: The results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders.
Abstract: How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

Journal ArticleDOI
TL;DR: This study conceptualizes supply network disruption and resilience by examining the structural relationships among entities in the network by comparing four fundamental supply network structures, and shows that node/arc-level disruptions do not necessarily lead to network- level disruptions, and demonstrates the importance of differentiating a nodes/arc disruption vs. a network disruption.

Proceedings ArticleDOI
18 Mar 2015
TL;DR: An empirical evaluation shows that Explanatory Debugging increased participants' understanding of the learning system by 52% and allowed participants to correct its mistakes up to twice as efficiently as participants using a traditional learning system.
Abstract: How can end users efficiently influence the predictions that machine learning systems make on their behalf? This paper presents Explanatory Debugging, an approach in which the system explains to users how it made each of its predictions, and the user then explains any necessary corrections back to the learning system. We present the principles underlying this approach and a prototype instantiating it. An empirical evaluation shows that Explanatory Debugging increased participants' understanding of the learning system by 52% and allowed participants to correct its mistakes up to twice as efficiently as participants using a traditional learning system.

Journal ArticleDOI
07 May 2015-Nature
TL;DR: This work shows that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, and reveals the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean.
Abstract: Internal oceanic waves are subsurface gravity waves that can be enormous and travel thousands of kilometres before breaking but they are difficult to study; here observations of such waves in the South China Sea reveal their formation mechanism, extreme turbulence, relationship to the Kuroshio Current and energy budget. Internal waves are the underwater version of more familiar surface waves. They can be enormous and travel thousands of kilometres before breaking. The South China Sea is known to be home to the largest internal waves in the world's oceans, but their size, generation mechanisms and role in the regional energy budget are unknown. Matthew Alford and colleagues now present the results from the IWISE observational campaign and reveal that internal waves more than 200 metres high break in the South China Sea and create turbulence that is orders of magnitude larger than in the open ocean, and that wave formation is influenced by the Kuroshio current. These results now allow for a complete energy budget of the South China Sea, and for a more accurate incorporation of internal waves into climate models. Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8,9,10,11 have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

Journal ArticleDOI
TL;DR: A phylogeny of beetles based on DNA sequence data from eight nuclear genes, including six single‐copy nuclear protein‐coding genes, for 367 species representing 172 of 183 extant families provides a uniquely well‐resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera.
Abstract: © 2015 The Authors. Systematic Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society This is an open access article under the terms of the Creative Commons AttributionߚNonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Journal ArticleDOI
TL;DR: These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications.

Journal ArticleDOI
26 Jun 2015-Science
TL;DR: An up–to–10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location is shown.
Abstract: As global warming continues, reef-building corals could avoid local population declines through “genetic rescue” involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up–to–10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.

Journal ArticleDOI
TL;DR: This large, national-level cohort found positive associations between several common causes of death and exposure to PM2.5, O3, and NO2 in the Canadian Census Health and Environment Cohort (CanCHEC).
Abstract: BackgroundFew studies examining the associations between long-term exposure to ambient air pollution and mortality have considered multiple pollutants when assessing changes in exposure due to resi...