scispace - formally typeset
Search or ask a question
Institution

Oregon State University

EducationCorvallis, Oregon, United States
About: Oregon State University is a education organization based out in Corvallis, Oregon, United States. It is known for research contribution in the topics: Population & Gene. The organization has 28192 authors who have published 64044 publications receiving 2634108 citations. The organization is also known as: Oregon Agricultural College & OSU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the functional relations between arousal, emotion, and attention, and found that the emotions of sadness, relief, and low-intensity pleasure were most closely related to the measures of central arousal.
Abstract: Contemporary models of human temperament have been based on the general constructs of arousal, emotion, and self-regulation. In order to more precisely investigate these constructs, they were theoretically decomposed into 19 subconstructs, and homogeneous scales were developed to assess them. The scales were constructed through an item-selection technique that maximized internal consistency and minimized conceptual overlap. Correlational and factor analyses suggested that arousal can be usefully assessed in terms of its central, autonomic, and motor components. The emotions of sadness, relief, and low-intensity pleasure were most closely related to the measures of central arousal. Emotions of fear, frustration, discomfort, and high-intensity pleasure were more closely related to measures of attentional control. We discuss these findings in terms of the functional relations between arousal, emotion, and attention.

541 citations

Journal ArticleDOI
TL;DR: This work addressed the hypothesis that differential sensitivity among species to UV radiation contributes to population declines in amphibians by focusing on species-specific differences in the abilities of eggs to repair UV radiation damage to DNA and differential hatching success of embryos exposed to solar radiation at natural oviposition sites.
Abstract: The populations of many amphibian species, in widely scattered habitats, appear to be in severe decline; other amphibians show no such declines. There is no known single cause for the declines, but their widespread distribution suggests involvement of global agents--increased UV-B radiation, for example. We addressed the hypothesis that differential sensitivity among species to UV radiation contributes to these population declines. We focused on species-specific differences in the abilities of eggs to repair UV radiation damage to DNA and differential hatching success of embryos exposed to solar radiation at natural oviposition sites. Quantitative comparisons of activities of a key UV-damage-specific repair enzyme, photolyase, among oocytes and eggs from 10 amphibian species were reproducibly characteristic for a given species but varied > 80-fold among the species. Levels of photolyase generally correlated with expected exposure of eggs to sunlight. Among the frog and toad species studied, the highest activity was shown by the Pacific treefrog (Hyla regilla), whose populations are not known to be in decline. The Western toad (Bufo boreas) and the Cascades frog (Rana cascadae), whose populations have declined markedly, showed significantly lower photolyase levels. In field experiments, the hatching success of embryos exposed to UV radiation was significantly greater in H. regilla than in R. cascadae and B. boreas. Moreover, in R. cascadae and B. boreas, hatching success was greater in regimes shielded from UV radiation compared with regimes that allowed UV radiation. These observations are thus consistent with the UV-sensitivity hypothesis.

540 citations

Journal ArticleDOI
05 Feb 2021-Science
TL;DR: In this article, a clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-programmed cell death protein 1 (PD-1) therapy for patients with advanced melanoma.
Abstract: Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma

540 citations

Journal ArticleDOI
10 Jul 2015-Science
TL;DR: This work concludes that during recent interglacial periods, small increases in global mean temperature and just a few degrees of polar warming relative to the preindustrial period resulted in ≥6 m of GMSL rise, which is currently not possible to make a precise estimate of peak G MSL during the Pliocene.
Abstract: BACKGROUND:Although thermal expansion of seawater and melting of mountain glaciers have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions to GMSL rise under future warming. To better constrain polarice-sheetresponse to warmer temperatures, we draw on evidence from in- terglacial periods in the geologic record that ex- perienced warmer polar temperatures and higher GMSLs than present. Coastal records of sea level from these previous warm periods dem- onstrate geographic variability because of the influence of several geophysical processes that operate across a range of magnitudes and time scales. Inferring GMSL and ice- volume changes from these reconstructions is nontrivial and generally requires the use of geophysical models. ADVANCES: Interdisciplinary studies of geo- logic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise. Advances in our understanding of polar ice-sheet response to warmer climates have been made through an increase in the number and geographic distribution of sea- level reconstructions, better ice-sheet constraints, and the recognition that several geophysical processes cause spatially complex patterns in sea level. In particular, accounting for glacial isostatic processes helps to decipher spatial variability in coastal sea-level records and has reconciled a number of site-specific sea-level reconstructions for warm periods that have oc- curred within the past several hundred thou- sand years. This enables us to infer that during recent interglacial periods, small increases in

540 citations

Journal ArticleDOI
23 Jul 2020
TL;DR: It is shown that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at theS2′ site, and this approach has considerable therapeutic potential for treatment of COVID-19.
Abstract: The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.

539 citations


Authors

Showing all 28447 results

NameH-indexPapersCitations
Robert Stone1601756167901
Menachem Elimelech15754795285
Thomas J. Smith1401775113919
Harold A. Mooney135450100404
Jerry M. Melillo13438368894
John F. Thompson132142095894
Thomas N. Williams132114595109
Peter M. Vitousek12735296184
Steven W. Running12635576265
Vincenzo Di Marzo12665960240
J. D. Hansen12297576198
Peter Molnar11844653480
Michael R. Hoffmann10950063474
David Pollard10843839550
David J. Hill107136457746
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Florida
200K papers, 7.1M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023105
2022377
20213,156
20203,109
20193,017
20182,987