scispace - formally typeset
Search or ask a question
Institution

Oregon State University

EducationCorvallis, Oregon, United States
About: Oregon State University is a education organization based out in Corvallis, Oregon, United States. It is known for research contribution in the topics: Population & Climate change. The organization has 28192 authors who have published 64044 publications receiving 2634108 citations. The organization is also known as: Oregon Agricultural College & OSU.


Papers
More filters
Journal ArticleDOI
TL;DR: An expansion of that work, improving the sensitivity and reproducibility of the method, as well as examination of solubilities of the copper soaps as a function of chain length and unsaturation, was described.
Abstract: In 1964, a method was described for the determination of free fatty acids (FFAs) in vegetable oil. This paper describes an expansion of that work, improving the sensitivity and reproducibility of the method, as well as examination of solubilities of the copper soaps as a function of chain length and unsaturation. Involvement of the micellar structure was reviewed. Finally, a procedure is described that permits very rapid determination of FFA at the 2.0–14.0 µmol (0.5–4.0 mg oleic acid) level, and the results with several oils are given. Particular attention was given to evaluation of solvent systems which would extract the copper complexes.

633 citations

Journal ArticleDOI
Marnix H. Medema1, Marnix H. Medema2, Renzo Kottmann2, Pelin Yilmaz2  +161 moreInstitutions (84)
TL;DR: This work proposes the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard, to facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters.
Abstract: A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.

633 citations

Journal ArticleDOI
TL;DR: It is argued that amphibian population declines are caused by different abiotic and biotic factors acting together in a context-dependent fashion, and different species and different populations of the same species may react in different ways to the same environmental insult.
Abstract: As part of an overall ‘‘biodiversity crisis’’ many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, disease, and the introduction of non-native species. In this paper, we argue that amphibian population declines are caused by different abiotic and biotic factors acting together in a context-dependent fashion. Moreover, different species and different populations of the same species may react in different ways to the same environmental insult. Thus, the causes of amphibian population declines will vary spatially and temporally. Although some generalizations (e.g. those concerning environmental stress and disease outbreaks) can be made about amphibian population declines, we suggest that these generalizations take into account the context-dependent dynamics of ecological systems.

633 citations

Journal ArticleDOI
TL;DR: In this article, a preliminary assessment of the variability in spectral vegetation indices (SVIs) across vegetation types was made using Landsat 5 Thematic Mapper imagery from three temperate zone sites with on-site LAI measurements.

632 citations

Journal ArticleDOI
TL;DR: The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day.
Abstract: Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones. Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data. The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes) suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history. W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.

629 citations


Authors

Showing all 28447 results

NameH-indexPapersCitations
Robert Stone1601756167901
Menachem Elimelech15754795285
Thomas J. Smith1401775113919
Harold A. Mooney135450100404
Jerry M. Melillo13438368894
John F. Thompson132142095894
Thomas N. Williams132114595109
Peter M. Vitousek12735296184
Steven W. Running12635576265
Vincenzo Di Marzo12665960240
J. D. Hansen12297576198
Peter Molnar11844653480
Michael R. Hoffmann10950063474
David Pollard10843839550
David J. Hill107136457746
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Florida
200K papers, 7.1M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023105
2022375
20213,156
20203,109
20193,017
20182,987