scispace - formally typeset
Search or ask a question

Showing papers by "Osaka University published in 2002"


Journal ArticleDOI
TL;DR: It is shown that the imidazoquinolines activate immune cells via the Toll-like receptor 7 (TLR7)-MyD88–dependent signaling pathway, and that neither MyD88- nor TLR7-deficient mice showed any inflammatory cytokine production by macrophages, proliferation of splenocytes or maturation of dendritic cells.
Abstract: The imidazoquinoline compounds imiquimod and R-848 are low-molecular-weight immune response modifiers that can induce the synthesis of interferon-alpha and other cytokines in a variety of cell types. These compounds have potent anti-viral and anti-tumor properties; however, the mechanisms by which they exert their anti-viral activities remain unclear. Here we show that the imidazoquinolines activate immune cells via the Toll-like receptor 7 (TLR7)-MyD88-dependent signaling pathway. In response to the imidazoquinolines, neither MyD88- nor TLR7-deficient mice showed any inflammatory cytokine production by macrophages, proliferation of splenocytes or maturation of dendritic cells. Imidazoquinoline-induced signaling events were also abolished in both MyD88- and TLR7-deficient mice.

2,565 citations


Journal ArticleDOI
TL;DR: The results indicate that adiponectin/ACRP30 deficiency and high TNF-α levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.
Abstract: Here we investigated the biological functions of adiponectin/ACRP30, a fat-derived hormone, by disrupting the gene that encodes it in mice. Adiponectin/ACRP30-knockout (KO) mice showed delayed clearance of free fatty acid in plasma, low levels of fatty-acid transport protein 1 (FATP-1) mRNA in muscle, high levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in adipose tissue and high plasma TNF-alpha concentrations. The KO mice exhibited severe diet-induced insulin resistance with reduced insulin-receptor substrate 1 (IRS-1)-associated phosphatidylinositol 3 kinase (PI3-kinase) activity in muscle. Viral mediated adiponectin/ACRP30 expression in KO mice reversed the reduction of FATP-1 mRNA, the increase of adipose TNF-alpha mRNA and the diet-induced insulin resistance. In cultured myocytes, TNF-alpha decreased FATP-1 mRNA, IRS-1-associated PI3-kinase activity and glucose uptake, whereas adiponectin increased these parameters. Our results indicate that adiponectin/ACRP30 deficiency and high TNF-alpha levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.

2,095 citations


Journal ArticleDOI
TL;DR: A new clone detection technique, which consists of the transformation of input source text and a token-by-token comparison, is proposed, which has effectively found clones and the metrics have been able to effectively identify the characteristics of the systems.
Abstract: A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce the maintainability of software, several code clone detection techniques and tools have been proposed. This paper proposes a new clone detection technique, which consists of the transformation of input source text and a token-by-token comparison. For its implementation with several useful optimization techniques, we have developed a tool, named CCFinder (Code Clone Finder), which extracts code clones in C, C++, Java, COBOL and other source files. In addition, metrics for the code clones have been developed. In order to evaluate the usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK, FreeBSD, NetBSD, Linux, and many other systems. As a result, CCFinder has effectively found clones and the metrics have been able to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone detection techniques.

1,700 citations


Journal ArticleDOI
Yasushi Okazaki, Masaaki Furuno, Takeya Kasukawa1, Jun Adachi, Hidemasa Bono, S. Kondo, Itoshi Nikaido2, Naoki Osato, Rintaro Saito3, Harukazu Suzuki, Itaru Yamanaka, H. Kiyosawa2, Ken Yagi, Yasuhiro Tomaru4, Yuki Hasegawa2, A. Nogami2, Christian Schönbach, Takashi Gojobori, Richard M. Baldarelli, David P. Hill, Carol J. Bult, David A. Hume5, John Quackenbush6, Lynn M. Schriml7, Alexander Kanapin, Hideo Matsuda8, Serge Batalov9, Kirk W. Beisel10, Judith A. Blake, Dirck W. Bradt, Vladimir Brusic, Cyrus Chothia11, Lori E. Corbani, S. Cousins, Emiliano Dalla, Tommaso A. Dragani, Colin F. Fletcher12, Colin F. Fletcher9, Alistair R. R. Forrest5, K. S. Frazer13, Terry Gaasterland14, Manuela Gariboldi, Carmela Gissi15, Adam Godzik16, Julian Gough11, Sean M. Grimmond5, Stefano Gustincich17, Nobutaka Hirokawa18, Ian J. Jackson19, Erich D. Jarvis20, Akio Kanai3, Hideya Kawaji1, Hideya Kawaji8, Yuka Imamura Kawasawa21, Rafal M. Kedzierski21, Benjamin L. King, Akihiko Konagaya, Igor V. Kurochkin, Yong-Hwan Lee6, Boris Lenhard22, Paul A. Lyons23, Donna Maglott7, Lois J. Maltais, Luigi Marchionni, Louise M. McKenzie, Harukata Miki18, Takeshi Nagashima, Koji Numata3, Toshihisa Okido, William J. Pavan7, Geo Pertea6, Graziano Pesole15, Nikolai Petrovsky24, Ramesh S. Pillai, Joan Pontius7, D. Qi, Sridhar Ramachandran, Timothy Ravasi5, Jonathan C. Reed16, Deborah J Reed, Jeffrey G. Reid, Brian Z. Ring, M. Ringwald, Albin Sandelin22, Claudio Schneider, Colin A. Semple19, Mitsutoshi Setou18, K. Shimada25, Razvan Sultana6, Yoichi Takenaka8, Martin S. Taylor19, Rohan D. Teasdale5, Masaru Tomita3, Roberto Verardo, Lukas Wagner7, Claes Wahlestedt22, Y. Wang6, Yoshiki Watanabe25, Christine A. Wells5, Laurens G. Wilming26, Anthony Wynshaw-Boris27, Masashi Yanagisawa21, Ivana V. Yang6, L. Yang, Zheng Yuan5, Mihaela Zavolan14, Yunhui Zhu, Anne M. Zimmer28, Piero Carninci, N. Hayatsu, Tomoko Hirozane-Kishikawa, Hideaki Konno, M. Nakamura, Naoko Sakazume, K. Sato4, Toshiyuki Shiraki, Kazunori Waki, Jun Kawai, Katsunori Aizawa, Takahiro Arakawa, S. Fukuda, A. Hara, W. Hashizume, K. Imotani, Y. Ishii, Masayoshi Itoh, Ikuko Kagawa, A. Miyazaki, K. Sakai, D. Sasaki, K. Shibata, Akira Shinagawa, Ayako Yasunishi, Masayasu Yoshino, Robert H. Waterston29, Eric S. Lander30, Jane Rogers26, Ewan Birney, Yoshihide Hayashizaki 
05 Dec 2002-Nature
TL;DR: The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Abstract: Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences These are clustered into 33,409 'transcriptional units', contributing 901% of a newly established mouse transcriptome database Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome 41% of all transcriptional units showed evidence of alternative splicing In protein-coding transcripts, 79% of splice variations altered the protein product Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics

1,663 citations


Journal ArticleDOI
TL;DR: This paper showed that TLR1-deficient mice showed impaired proinflammatory cytokine production in response to 19-kDa lipoprotein and a synthetic triacylated lipopeptide.
Abstract: The Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns (PAMPs). TLR2 is essential for the signaling of a variety of PAMPs, including bacterial lipoprotein/lipopeptides, peptidoglycan, and GPI anchors. TLR6 associates with TLR2 and recognizes diacylated mycoplasmal lipopeptide along with TLR2. We report here that TLR1 associates with TLR2 and recognizes the native mycobacterial 19-kDa lipoprotein along with TLR2. Macrophages from TLR1-deficient (TLR1(-/-)) mice showed impaired proinflammatory cytokine production in response to the 19-kDa lipoprotein and a synthetic triacylated lipopeptide. In contrast, TLR1(-/-) cells responded normally to diacylated lipopeptide. TLR1 interacts with TLR2 and coexpression of TLR1 and TLR2 enhanced the NF-kappaB activation in response to a synthetic lipopeptide. Furthermore, lipoprotein analogs whose acylation was modified were preferentially recognized by TLR1. Taken together, TLR1 interacts with TLR2 to recognize the lipid configuration of the native mycobacterial lipoprotein as well as several triacylated lipopeptides.

1,382 citations


Journal ArticleDOI
TL;DR: Findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.
Abstract: MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.

1,299 citations


Journal ArticleDOI
09 May 2002-Nature
TL;DR: Results indicate that milk fat globule-EGF-factor 8 secreted from activated macrophages binds to apoptotic cells, and brings them to phagocytes for engulfment.
Abstract: Apoptotic cells are rapidly engulfed by phagocytes to prevent the release of potentially noxious or immunogenic intracellular materials from the dying cells, thereby preserving the integrity and function of the surrounding tissue1. Phagocytes engulf apoptotic but not healthy cells, indicating that the apoptotic cells present a signal to the phagocytes, and the phagocytes recognize the signal using a specific receptor2. Here, we report a factor that links apoptotic cells to phagocytes. We found that milk fat globule-EGF-factor 8 (MFG-E8)3,4, a secreted glycoprotein, was produced by thioglycollate-elicited macrophages. MFG-E8 specifically bound to apoptotic cells by recognizing aminophospholipids such as phosphatidylserine. MFG-E8, when engaged by phospholipids, bound to cells via its RGD (arginine-glycine-aspartate) motif—it bound particularly strongly to cells expressing αvβ3 integrin. The NIH3T3 cell transformants that expressed a high level of αvβ3 integrin were found to engulf apoptotic cells when MFG-E8 was added. MFG-E8 carrying a point mutation in the RGD motif behaved as a dominant-negative form, and inhibited the phagocytosis of apoptotic cells by peritoneal macrophages in vitro and in vivo. These results indicate that MFG-E8 secreted from activated macrophages binds to apoptotic cells, and brings them to phagocytes for engulfment.

1,270 citations


Journal ArticleDOI
TL;DR: The results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes.
Abstract: Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes.

1,169 citations


Journal ArticleDOI
TL;DR: Data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.
Abstract: Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized ≈16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.

1,159 citations


Journal ArticleDOI
TL;DR: Assessment of the role of adiponectin in later development of type 2 diabetes in 70 patients who later developed type 1 diabetes and 70 controls found individuals with high concentrations of this protein were less likely to develop type 2abetes than those with low concentrations.

1,128 citations


Journal ArticleDOI
TL;DR: This study indicated that the gastric vagal afferent is the major pathway conveying ghrelin's signals for starvation and GH secretion to the brain.

Journal ArticleDOI
21 Nov 2002-Nature
TL;DR: The results show that TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4, and is not specific to TLR3, TLR7 or TLR9 signalling, which is in contrast to previous suggestions.
Abstract: Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.

Journal ArticleDOI
TL;DR: It is found that in MD-2−/− embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR3 was distributed at the leading edge surface of cells in wild-type embryonic fibrablasts andMD-2 is essential for correct intracellular distribution and LPS-recognition ofTLR4.
Abstract: Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2(-/-) mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2(-/-) embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.

Journal ArticleDOI
TL;DR: These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.
Abstract: Background— Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Methods and Results— Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or β-galactosidase (Ad-βgal). The plasma adiponectin levels in Ad-APN–treated mice increased 48 times as much as those in Ad-βgal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN–treated mice by 30% compared with Ad-βgal–treated mice (P<0.05). In the lesions of Ad-APN–treated mice, the lipid dr...

Journal ArticleDOI
05 Apr 2002-Cell
TL;DR: Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelium.

Journal ArticleDOI
TL;DR: In this article, the strength and ductility of UFG aluminum and iron fabricated by ARB and annealing were clarified in the grain sizes ranging from 200 nm to 20 μm.

Journal ArticleDOI
10 Oct 2002-Nature
TL;DR: In this article, the crystal structure of AcrB at 3.5 A resolution was determined, which implies that substrates translocated from the cell interior through the transmembrane region and from the periplasm through the vestibules are collected in the central cavity and then actively transported through the pore into the TolC tunnel.
Abstract: AcrB is a major multidrug exporter in Escherichia coli. It cooperates with a membrane fusion protein, AcrA, and an outer membrane channel, TolC. We have determined the crystal structure of AcrB at 3.5 A resolution. Three AcrB protomers are organized as a homotrimer in the shape of a jellyfish. Each protomer is composed of a transmembrane region 50 A thick and a 70 A protruding headpiece. The top of the headpiece opens like a funnel, where TolC might directly dock into AcrB. A pore formed by three alpha-helices connects the funnel with a central cavity located at the bottom of the headpiece. The cavity has three vestibules at the side of the headpiece which lead into the periplasm. In the transmembrane region, each protomer has twelve transmembrane alpha-helices. The structure implies that substrates translocated from the cell interior through the transmembrane region and from the periplasm through the vestibules are collected in the central cavity and then actively transported through the pore into the TolC tunnel.

Journal ArticleDOI
TL;DR: In this paper, the cleavage and addition of ortho C−H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitrile, and aldehydes to olefins and acetlylenes can be achieved with the aid of ruthenium catalysts.
Abstract: The cleavage and addition of ortho C−H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitrile, and aldehydes to olefins and acetlylenes can be achieved catalytically with the aid of ruthenium catalysts. The reaction is generally highly efficient and useful in synthetic methods. The coordination to the metal center by a heteroatom in directing groups such as carbonyl and imino groups is the key. The reductive elimination to form a C−C bond is the rate-determining step.

Journal ArticleDOI
TL;DR: Results indicate that variants in the LTA are risk factors for myocardial infraction and implicate LTA in the pathogenesis of the disorder.
Abstract: By means of a large-scale, case-control association study using 92,788 gene-based single-nucleotide polymorphism (SNP) markers, we identified a candidate locus on chromosome 6p21 associated with susceptibility to myocardial infarction. Subsequent linkage-disequilibrium (LD) mapping and analyses of haplotype structure showed significant associations between myocardial infarction and a single 50 kb halpotype comprised of five SNPs in LTA (encoding lymphotoxin-alpha), NFKBIL1 (encoding nuclear factor of kappa light polypeptide gene enhancer in B cells, inhibitor-like 1) and BAT1 (encoding HLA-B associated transcript 1). Homozygosity with respect to each of the two SNPs in LTA was significantly associated with increased risk for myocardial infarction (odds ratio = 1.78, chi(2) = 21.6, P = 0.00000033; 1,133 affected individuals versus 1,006 controls). In vitro functional analyses indicated that one SNP in the coding region of LTA, which changed an amino-acid residue from threonine to asparagine (Thr26Asn), effected a twofold increase in induction of several cell-adhesion molecules, including VCAM1, in vascular smooth-muscle cells of human coronary artery. Moreover, the SNP, in intron 1 of LTA, enhanced the transcriptional level of LTA. These results indicate that variants in the LTA are risk factors for myocardial infraction and implicate LTA in the pathogenesis of the disorder.

Journal ArticleDOI
TL;DR: In this paper, a frontal affinity chromatography (FAC) was used to quantitatively analyze the interactions at 20 °C between 13 galectins including 16 CRDs originating from mammals, chick, nematode, sponge, and mushroom, with 41 pyridylaminated (PA) oligosaccharides.

Journal ArticleDOI
01 Sep 2002-Diabetes
TL;DR: The results indicate that androgens decrease plasma adiponectin and that androgen-induced hypoadiponectinemia may be related to the high risks of insulin resistance and atherosclerosis in men.
Abstract: Adiponectin, an adipose-specific secretory protein, exhibits antidiabetic and antiatherogenic properties. In the present study, we examined the effects of sex hormones on the regulation of adiponectin production. Plasma adiponectin concentrations were significantly lower in 442 men (age, 52.6 ± 11.9 years [mean ± SD]) than in 137 women (53.2 ± 12.0 years) but not different between pre- and postmenopausal women. In mice, ovariectomy did not alter plasma adiponectin levels. In contrast, high levels of plasma adiponectin were found in castrated mice. Testosterone treatment reduced plasma adiponectin concentration in both sham-operated and castrated mice. In 3T3-L1 adipocytes, testosterone reduced adiponectin secretion into the culture media, using pulse-chase study. Castration-induced increase in plasma adiponectin was associated with a significant improvement of insulin sensitivity. Our results indicate that androgens decrease plasma adiponectin and that androgen-induced hypoadiponectinemia may be related to the high risks of insulin resistance and atherosclerosis in men.

Journal ArticleDOI
TL;DR: Evidence for the involvement of IL-6 in the pathophysiology of autoimmune diseases and chronic inflammatory proliferative diseases (CIPD) is reviewed and the possible molecular mechanisms of its involvement are discussed.

Journal ArticleDOI
TL;DR: Plasma ADPN levels are an inverse predictor of cardiovascular outcomes among patients with end-stage renal disease and are related to several metabolic risk factors in a manner consistent with the hypothesis that this protein acts as a protective factor for the cardiovascular system.
Abstract: Adiponectin (ADPN), which is a secretory protein of adipose tissue, attenuates endothelial inflammatory responses in vitro. Among human subjects, plasma ADPN concentrations are reduced among patients with atherosclerotic complications but are substantially increased among patients with advanced renal failure. The clinical and biochemical correlates of plasma ADPN levels were investigated and the predictive power of ADPN levels with respect to survival rates and cardiovascular events was prospectively tested in a cohort of 227 hemodialysis patients, who were monitored for 31 +/- 13 mo. Plasma ADPN levels were 2.5 times higher (P < 0.0001) among dialysis patients (15.0 +/- 7.7 microg/ml) than among healthy subjects (6.3 +/- 2.0 microg/ml), were independent of age, and were higher (P = 0.03) among women (15.2 +/- 7.9 microg/ml) than among men (14.0 +/- 7.4 microg/ml). For both genders, plasma ADPN levels were inversely related to body mass index values, plasma leptin levels, insulin levels, serum triglyceride levels, and homeostatic model assessment index values. Furthermore, plasma ADPN levels were directly related to HDL cholesterol levels and inversely related to von Willebrand factor levels. Plasma ADPN levels were lower (P < 0.05) among patients who experienced new cardiovascular events (13.7 +/- 7.3 microg/ml) than among event-free patients (15.8 +/- 7.8 microg/ml). There was a 3% risk reduction for each 1 microg/ml increase in plasma ADPN levels, and the relative risk of adverse cardiovascular events was 1.56 times (95% confidence interval, 1.12 to 1.99 times) higher among patients in the first ADPN tertile, compared with those in the third tertile. Plasma ADPN levels are an inverse predictor of cardiovascular outcomes among patients with end-stage renal disease. Furthermore, ADPN is related to several metabolic risk factors in a manner consistent with the hypothesis that this protein acts as a protective factor for the cardiovascular system.

Journal ArticleDOI
TL;DR: An adipo-vascular axis, a direct link between fat and artery, is suggested and a therapeutic strategy to increase plasma adiponectin should be useful in preventing vascular restenosis after angioplasty.

Journal ArticleDOI
TL;DR: In this paper, materials design of new functional diluted magnetic semiconductors (DMSs) is presented based on first principles calculations, and the stability of the ferromagnetic state in ZnO-, ZnS-, Zns, ZnSe and ZnTe-based DMSs is investigated systematically.
Abstract: Materials design of new functional diluted magnetic semiconductors (DMSs) is presented based on first principles calculations. The stability of the ferromagnetic state in ZnO-, ZnS-, ZnSe-, ZnTe-, GaAs- and GaN-based DMSs is investigated systematically and it is suggested that V- or Cr-doped ZnO, ZnS, ZnSe and ZnTe are candidates for high-TC ferromagnetic DMSs. V-, Cr- or Mn-doped GaAs and GaN are also candidates for high-TC ferromagnets. It is also shown that Fe-, Co- or Ni-doped ZnO is ferromagnetic. In particular, the carrier-induced ferromagnetism in ZnO-based DMSs is investigated and it is found that their magnetic states are controllable by changing the carrier density. The origin of the ferromagnetism in the DMSs is also discussed.

Journal ArticleDOI
TL;DR: It is suggested that inhibition of HB-EGF shedding could be a potent therapeutic strategy for cardiac hypertrophy and that dominant-negative expression of ADAM12 abrogated this signaling.
Abstract: G-protein-coupled receptor (GPCR) agonists are well-known inducers of cardiac hypertrophy. We found that the shedding of heparin-binding epidermal growth factor (HB-EGF) resulting from metalloproteinase activation and subsequent transactivation of the epidermal growth factor receptor occurred when cardiomyocytes were stimulated by GPCR agonists, leading to cardiac hypertrophy. A new inhibitor of HB-EGF shedding, KB-R7785, blocked this signaling. We cloned a disintegrin and metalloprotease 12 (ADAM12) as a specific enzyme to shed HB-EGF in the heart and found that dominant-negative expression of ADAM12 abrogated this signaling. KB-R7785 bound directly to ADAM12, suggesting that inhibition of ADAM12 blocked the shedding of HB-EGF. In mice with cardiac hypertrophy, KB-R7785 inhibited the shedding of HB-EGF and attenuated hypertrophic changes. These data suggest that shedding of HB-EGF by ADAM12 plays an important role in cardiac hypertrophy, and that inhibition of HB-EGF shedding could be a potent therapeutic strategy for cardiac hypertrophy.

Journal ArticleDOI
27 Nov 2002-Cell
TL;DR: It is shown here that binding sites for Runt domain transcription factors are essential for CD4 silencer function at both stages, and that different Runx family members are required to fulfill unique functions at each stage.

Journal ArticleDOI
TL;DR: Wurtzite InN films were grown on a thick GaN layer by metalorganic vapor phase epitaxy as discussed by the authors, and growth of a (0001)-oriented single crystalline layer was confirmed by Raman scattering, x-ray diffraction, and reflection high energy electron diffraction.
Abstract: Wurtzite InN films were grown on a thick GaN layer by metalorganic vapor phase epitaxy. Growth of a (0001)-oriented single crystalline layer was confirmed by Raman scattering, x-ray diffraction, and reflection high energy electron diffraction. We observed at room temperature strong photoluminescence (PL) at 0.76 eV as well as a clear absorption edge at 0.7–1.0 eV. In contrast, no PL was observed, even by high power excitation, at ∼1.9 eV, which had been reported as the band gap in absorption experiments on polycrystalline films. Careful inspection strongly suggests that a wurtzite InN single crystal has a true bandgap of 0.7–1.0 eV, and the discrepancy could be attributed to the difference in crystallinity.

Journal ArticleDOI
TL;DR: In this article, a titanium dioxide powder consisting of 1 μm size rutile and anatase particles was obtained, on which developed crystal faces were observed by a scanning electron microscope.
Abstract: A titanium dioxide powder consisting of 1 μm size rutile and anatase particles was obtained, on which developed crystal faces were observed by a scanning electron microscope. From electron diffraction analyses, it was found that the rutile particles exposed {011} and {110} crystal faces, and the anatase particles exposed {001} and {011} faces. This powder showed high activity for some photocatalytic reactions, including oxidation of water. After photocatalytic oxidation of water on the powder using hexachloroplatinate(IV) ions as the electron acceptors, Pt deposits were observed mostly on the rutile particles, especially on the {110} face. When 2-propanol was added to the solution, Pt was deposited on both the anatase and rutile particles. Using the thus prepared Pt-deposited TiO2 powder, Pb2+ ions were photocatalytically oxidized into PbO2. After this reaction, PbO2 deposits were seen on the {011} face of the rutile particles. On the anatase particles, PbO2 deposits were observed in a larger amount on the {001} face than on the {011} face. These results indicate that the crystal faces help in the separation of electrons and holes, and that this effect is stronger for the rutile particles than for the anatase particles.

Journal ArticleDOI
S. Fukuda1, Y. Fukuda1, M. Ishitsuka1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, K. Kaneyuki1, K. Kobayashi1, Yusuke Koshio1, M. Miura1, S. Moriyama1, Masayuki Nakahata1, S. Nakayama1, Toshio Namba1, A. Okada1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, H. Takeuchi1, Y. Takeuchi1, Y. Totsuka1, Shoichi Yamada1, Shantanu Desai2, M. Earl2, E. Kearns2, M. D. Messier2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber3, T. Barszczak4, David William Casper4, W. Gajewski4, W. R. Kropp4, S. Mine4, D. W. Liu4, M. B. Smy4, Henry W. Sobel4, M. R. Vagins4, A. M. Gago5, K. S. Ganezer5, W. E. Keig5, R. W. Ellsworth6, S. Tasaka7, A. Kibayashi8, John G. Learned8, S. Matsuno8, D. Takemori8, Y. Hayato9, T. Ishii9, Takashi Kobayashi9, T. Maruyama9, Koji Nakamura9, Y. Obayashi1, Y. Obayashi9, Y. Oyama9, Makoto Sakuda9, Minoru Yoshida9, M. Kohama10, T. Iwashita10, Atsumu Suzuki10, A. K. Ichikawa9, A. K. Ichikawa11, T. Inagaki11, I. Kato11, Tsuyoshi Nakaya11, K. Nishikawa11, Todd Haines12, Todd Haines4, S. Dazeley13, S. Hatakeyama13, R. Svoboda13, E. Blaufuss14, M. L. Chen14, J. A. Goodman14, G. Guillian14, G. W. Sullivan14, D. Turč14, Kate Scholberg15, Alec Habig16, M. Ackermann17, J. Hill17, C. K. Jung17, Magdalena Malek17, K. Martens17, C. Mauger17, C. McGrew17, E. Sharkey17, B. Viren17, B. Viren3, C. Yanagisawa17, T. Toshito18, C. Mitsuda19, K. Miyano19, C. Saji19, T. Shibata19, Y. Kajiyama20, Y. Nagashima20, K. Nitta20, M. Takita20, Hyosun Kim21, S. B. Kim21, J. Yoo21, H. Okazawa, T. Ishizuka22, M. Etoh23, Y. Gando23, Takehisa Hasegawa23, Kunio Inoue23, K. Ishihara23, J. Shirai23, A. Suzuki23, Masatoshi Koshiba1, Y. Hatakeyama24, Y. Ichikawa24, M. Koike24, Kyoshi Nishijima24, Hirokazu Ishino25, Mikio Morii25, R. Nishimura25, Y. Watanabe25, D. Kielczewska4, D. Kielczewska26, H. G. Berns27, S. C. Boyd27, A. L. Stachyra27, R. J. Wilkes27 
TL;DR: In this paper, a number of different fits to solar neutrino mixing and mass square difference were performed using 1496 days of Super-Kamiokande-I's solar NE data.