scispace - formally typeset
Search or ask a question

Showing papers by "Osaka University published in 2017"


Journal ArticleDOI
12 Dec 2017-JAMA
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Abstract: Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

2,116 citations


Journal ArticleDOI
TL;DR: In this phase 3 study, the survival benefits indicate that nivolumab might be a new treatment option for heavily pretreated patients with advanced gastric or gastro-oesophageal junction cancer.

1,512 citations


Journal ArticleDOI
TL;DR: It is hoped that combination of Treg-cell targeting with the activation of tumor-specific effector T cells will make the current cancer immunotherapy more effective.
Abstract: FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.

1,193 citations


Journal ArticleDOI
TL;DR: A panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagic research.
Abstract: Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.

1,095 citations


Journal ArticleDOI
TL;DR: Owing to the interfacial interaction between BP and CN, efficient charge transfer occurred, thereby enhancing the photocatalytic performance, and the present results show that BP/CN is a metal-free photocatalyst for artificial photosynthesis and renewable energy conversion.
Abstract: In the drive toward green and sustainable chemistry, exploring efficient and stable metal-free photocatalysts with broadband solar absorption from the UV to near-infrared region for the photoreduction of water to H2 remains a big challenge. To this end, a binary nanohybrid (BP/CN) of two-dimensional (2D) black phosphorus (BP) and graphitic carbon nitride (CN) was designed and used as a metal-free photocatalyst for the first time. During irradiation of BP/CN in water with >420 and >780 nm light, solid H2 gas was generated, respectively. Owing to the interfacial interaction between BP and CN, efficient charge transfer occurred, thereby enhancing the photocatalytic performance. The efficient charge-trapping and transfer processes were thoroughly investigated with time-resolved diffuse reflectance spectroscopic measurement. The present results show that BP/CN is a metal-free photocatalyst for artificial photosynthesis and renewable energy conversion.

857 citations


Journal ArticleDOI
TL;DR: The determination of the light-quark masses, the form factor, and the decay constant ratio arising in the semileptonic $$K \rightarrow \pi $$K→π transition at zero momentum transfer are reported on.
Abstract: We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor [Formula: see text], arising in the semileptonic [Formula: see text] transition at zero momentum transfer, as well as the decay constant ratio [Formula: see text] and its consequences for the CKM matrix elements [Formula: see text] and [Formula: see text]. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of [Formula: see text] and [Formula: see text] Chiral Perturbation Theory. We review the determination of the [Formula: see text] parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for [Formula: see text] and [Formula: see text] (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant [Formula: see text].

678 citations


Journal ArticleDOI
TL;DR: The 2017 plasmas roadmap as mentioned in this paper is the first update of a planned series of periodic updates of the Plasma Roadmap, which was published by the Journal of Physics D: Applied Physics in 2012.
Abstract: Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

677 citations



Journal ArticleDOI
TL;DR: It is reported that a commercially available TiO2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N2, successfully produces NH3.
Abstract: Ammonia (NH3) is an essential chemical in modern society. It is currently manufactured by the Haber–Bosch process using H2 and N2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH3 production from water and N2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N2, successfully produces NH3. The active sites for N2 reduction are the Ti3+ species on the oxygen vacancies. These species act as adsorption sites for N2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N2 to NH3. The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO2 ...

628 citations


Journal ArticleDOI
TL;DR: Results indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells, and provide valuable new insights into the control of cellularHomeostasis.
Abstract: Emerging evidence is revealing that exosomes contribute to many aspects of physiology and disease through intercellular communication However, the biological roles of exosome secretion in exosome-secreting cells have remained largely unexplored Here we show that exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells The inhibition of exosome secretion results in the accumulation of nuclear DNA in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery This event provokes the innate immune response, leading to reactive oxygen species (ROS)-dependent DNA damage response and thus induce senescence-like cell-cycle arrest or apoptosis in normal human cells These results, in conjunction with observations that exosomes contain various lengths of chromosomal DNA fragments, indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells Together, these findings enhance our understanding of exosome biology, and provide valuable new insights into the control of cellular homeostasis

527 citations


Journal ArticleDOI
TL;DR: A printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant, resulting in a drastic improvement of conductivity is reported.
Abstract: Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant Our printable elastic composites exhibit conductivity higher than 4,000 S cm-1 (highest value: 6,168 S cm-1) at 0% strain, and 935 S cm-1 when stretched up to 400% Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%

Book ChapterDOI
TL;DR: The Worldwide Protein Data Bank partners are working closely with experts in related experimental areas to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.
Abstract: The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences The PDB archive currently houses ~130,000 entries (May 2017) It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdborg), which includes the RCSB Protein Data Bank (RCSB PDB; rcsborg), the Protein Data Bank Japan (PDBj; pdbjorg), the Protein Data Bank in Europe (PDBe; pdbeorg), and BioMagResBank (BMRB; wwwbmrbwiscedu) The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (depositwwpdborg) The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM) wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2845 moreInstitutions (197)
TL;DR: This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
Abstract: During 2015 the ATLAS experiment recorded 3.8 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, respons ...

Journal ArticleDOI
TL;DR: The recent progress in understanding what could be considered Einstein's richest laboratory is reviewed, highlighting in particular the numerous significant advances of the last decade in models, techniques and results for fully general-relativistic dynamical simulations.
Abstract: In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

Journal ArticleDOI
02 Mar 2017-Nature
TL;DR: The structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å are described, providing a mechanism for the O=O bond formation consistent with that proposed previously.
Abstract: Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 A resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 A using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 angstrom compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 A from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 A between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously

Journal ArticleDOI
TL;DR: A rapid search in PubMed shows that using "flow cytometry immunology" as a search term yields more than 68 000 articles, the first of which is not about lymphocytes as mentioned in this paper.
Abstract: The marriage between immunology and cytometry is one of the most stable and productive in the recent history of science. A rapid search in PubMed shows that, as of July 2017, using “flow cytometry immunology” as a search term yields more than 68 000 articles, the first of which, interestingly, is not about lymphocytes. It might be stated that, after a short engagement, the exchange of the wedding rings between immunology and cytometry officially occurred when the idea to link fluorochromes to monoclonal antibodies came about. After this, recognizing different types of cells became relatively easy and feasible not only by using a simple fluorescence microscope, but also by a complex and sometimes esoteric instrument, the flow cytometer that is able to count hundreds of cells in a single second, and can provide repetitive results in a tireless manner. Given this, the possibility to analyse immune phenotypes in a variety of clinical conditions has changed the use of the flow cytometer, which was incidentally invented in the late 1960s to measure cellular DNA by using intercalating dyes, such as ethidium bromide. The epidemics of HIV/AIDS in the 1980s then gave a dramatic impulse to the technology of counting specific cells, since it became clear that the quantification of the number of peripheral blood CD4+ T cells was crucial to follow the course of the infection, and eventually for monitoring the therapy. As a consequence, the development of flow cytometers that had to be easy-to-use in all clinical laboratories helped to widely disseminate this technology. Nowadays, it is rare to find an immunological paper or read a conference abstract in which the authors did not use flow cytometry as the main tool to dissect the immune system and identify its fine and complex functions. Of note, recent developments have created the sophisticated technology of mass cytometry, which is able to simultaneously identify dozens of molecules at the single cell level and allows us to better understand the complexity and beauty of the immune system.

Journal ArticleDOI
TL;DR: Experimental evidence for the realization of magnetic Weyl fermions in the strongly correlated metal Mn3Sn is reported in this paper, which is the only known experimental result for the Weyl Fermion realization.
Abstract: Experimental evidence for the realization of magnetic Weyl fermions in the strongly correlated metal Mn3Sn is reported.

Journal ArticleDOI
Georges Aad1, Alexander Kupco2, P. Davison3, Samuel Webb4  +2888 moreInstitutions (192)
TL;DR: Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS and is exploited to apply a local energy calibration and corrections depending on the nature of the cluster.
Abstract: The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

Journal ArticleDOI
TL;DR: An integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA libraries, with matching Cap Analysis Gene Expression (CAGE) data, is created, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Abstract: MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.

Journal ArticleDOI
TL;DR: Impairment of the innate immune functions of intestinal epithelial cells is associated with intestinal inflammation, and various immunological mediators modulate host immune responses, maintaining a well-balanced relationship between gut microbes and the host immune system.
Abstract: The intestine is a unique organ inhabited by a tremendous number of microorganisms Intestinal epithelial cells greatly contribute to the maintenance of the symbiotic relationship between gut microbiota and the host by constructing mucosal barriers, secreting various immunological mediators and delivering bacterial antigens Mucosal barriers, including physical barriers and chemical barriers, spatially segregate gut microbiota and the host immune system to avoid unnecessary immune responses to gut microbes, leading to the intestinal inflammation In addition, various immunological mediators, including cytokines and chemokines, secreted from intestinal epithelial cells stimulated by gut microbiota modulate host immune responses, maintaining a well-balanced relationship between gut microbes and the host immune system Therefore, impairment of the innate immune functions of intestinal epithelial cells is associated with intestinal inflammation

Journal ArticleDOI
TL;DR: An enhanced VSG control is proposed, with which oscillation damping and proper transient active power sharing are achieved by adjusting the virtual stator reactance based on state-space analyses and communication-less accurate reactive power sharing is achieved based on inversed voltage droop control feature and common ac bus voltage estimation.
Abstract: Virtual synchronous generator (VSG) control is a promising communication-less control method in a microgrid for its inertia support feature. However, active power oscillation and improper transient active power sharing are observed when basic VSG control is applied. Moreover, the problem of reactive power sharing error, inherited from conventional droop control, should also be addressed to obtain desirable stable state performance. In this paper, an enhanced VSG control is proposed, with which oscillation damping and proper transient active power sharing are achieved by adjusting the virtual stator reactance based on state-space analyses. Furthermore, communication-less accurate reactive power sharing is achieved based on inversed voltage droop control feature ( V–Q droop control) and common ac bus voltage estimation. Simulation and experimental results verify the improvement introduced by the proposed enhanced VSG control strategy.

Journal ArticleDOI
TL;DR: The current knowledge regarding autophagosome–lysosome fusion, focusing on mammals, is summarized, and the remaining questions and future directions of the field are discussed.
Abstract: Macroautophagy (autophagy) is a highly conserved intracellular degradation system that is essential for homeostasis in eukaryotic cells. Due to the wide variety of the cytoplasmic targets of autophagy, its dysregulation is associated with many diseases in humans, such as neurodegenerative diseases, heart disease and cancer. During autophagy, cytoplasmic materials are sequestered by the autophagosome – a double-membraned structure – and transported to the lysosome for digestion. The specific stages of autophagy are induction, formation of the isolation membrane (phagophore), formation and maturation of the autophagosome and, finally, fusion with a late endosome or lysosome. Although there are significant insights into each of these steps, the mechanisms of autophagosome–lysosome fusion are least understood, although there have been several recent advances. In this Commentary, we will summarize the current knowledge regarding autophagosome–lysosome fusion, focusing on mammals, and discuss the remaining questions and future directions of the field.

Journal ArticleDOI
TL;DR: In this article, the lattice relaxation in the twisted bilayer graphene (TBG) and its effect on the electronic band structure was theoretically studied and an effective continuum theory was developed to obtain the optimized structure to minimize the total energy.
Abstract: We theoretically study the lattice relaxation in the twisted bilayer graphene (TBG) and its effect on the electronic band structure. We develop an effective continuum theory to describe the lattice relaxation in general TBGs and obtain the optimized structure to minimize the total energy. At small rotation angles $l{2}^{\ensuremath{\circ}}$, in particular, we find that the relaxed lattice drastically reduces the area of the AA stacking region and forms a triangular domain structure with alternating AB and BA stacking regions. We then investigate the effect of the domain formation on the electronic band structure. The most notable change from the nonrelaxed model is that an energy gap of up to 20 meV opens at the superlattice subband edges on the electron and hole sides. We also find that the lattice relaxation significantly enhances the Fermi velocity, which was strongly suppressed in the nonrelaxed model.

Journal ArticleDOI
TL;DR: The results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA, and this study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes ofpolyploidization events across eukaryotes.
Abstract: Background: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence ...

Proceedings ArticleDOI
21 Jul 2017
TL;DR: GMS (Grid-based Motion Statistics), a simple means of encapsulating motion smoothness as the statistical likelihood of a certain number of matches in a region, enables translation of high match numbers into high match quality.
Abstract: Incorporating smoothness constraints into feature matching is known to enable ultra-robust matching. However, such formulations are both complex and slow, making them unsuitable for video applications. This paper proposes GMS (Grid-based Motion Statistics), a simple means of encapsulating motion smoothness as the statistical likelihood of a certain number of matches in a region. GMS enables translation of high match numbers into high match quality. This provides a real-time, ultra-robust correspondence system. Evaluation on videos, with low textures, blurs and wide-baselines show GMS consistently out-performs other real-time matchers and can achieve parity with more sophisticated, much slower techniques.

Journal ArticleDOI
TL;DR: Findings provide genetic evidence that lymphocytes are relevant to body weight regulation and offer insights into the pathogenesis of obesity.
Abstract: Obesity is a risk factor for a wide variety of health problems. In a genome-wide association study (GWAS) of body mass index (BMI) in Japanese people (n = 173,430), we found 85 loci significantly associated with obesity (P < 5.0 × 10-8), of which 51 were previously unknown. We conducted trans-ancestral meta-analyses by integrating these results with the results from a GWAS of Europeans and identified 61 additional new loci. In total, this study identifies 112 novel loci, doubling the number of previously known BMI-associated loci. By annotating associated variants with cell-type-specific regulatory marks, we found enrichment of variants in CD19+ cells. We also found significant genetic correlations between BMI and lymphocyte count (P = 6.46 × 10-5, rg = 0.18) and between BMI and multiple complex diseases. These findings provide genetic evidence that lymphocytes are relevant to body weight regulation and offer insights into the pathogenesis of obesity.

Journal ArticleDOI
TL;DR: Experimental evidence is reported for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature, and lays the foundation for a new field of science and technology involving the magnetic Wey excitations of strongly correlated electron systems such as Mn3 Sn.
Abstract: Recent discovery of both gapped and gapless topological phases in weakly correlated electron systems has introduced various relativistic particles and a number of exotic phenomena in condensed matter physics. The Weyl fermion is a prominent example of three dimensional (3D), gapless topological excitation, which has been experimentally identified in inversion symmetry breaking semimetals. However, their realization in spontaneously time reversal symmetry (TRS) breaking magnetically ordered states of correlated materials has so far remained hypothetical. Here, we report a set of experimental evidence for elusive magnetic Weyl fermions in Mn$_3$Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect even at room temperature. Detailed comparison between our angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3$d$ electrons. Moreover, our transport measurements have unveiled strong evidence for the chiral anomaly of Weyl fermions, namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. The magnetic Weyl fermions of Mn$_3$Sn have a significant technological potential, since a weak field ($\sim$ 10 mT) is adequate for controlling the distribution of Weyl points and the large fictitious field ($\sim$ a few 100 T) in the momentum space. Our discovery thus lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems.

Journal ArticleDOI
23 Mar 2017-Blood
TL;DR: The proposed consensus criteria will facilitate consistent diagnosis, appropriate treatment, and collaborative research and exclude infectious, malignant, and autoimmune disorders that can mimic iMCD.

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2944 moreInstitutions (220)
TL;DR: In this article, a search for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states was conducted using 36 : 1 fb(-1) of proton-proton collision data.
Abstract: A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states. The search uses 36 : 1 fb(-1) of proton-proton collision data, collected at root ...

Journal ArticleDOI
TL;DR: It is demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells and Notably, the domains during mitosis are observed, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle.