scispace - formally typeset
Search or ask a question
Institution

Osaka University

EducationOsaka, Japan
About: Osaka University is a education organization based out in Osaka, Japan. It is known for research contribution in the topics: Laser & Catalysis. The organization has 83778 authors who have published 185669 publications receiving 5158122 citations. The organization is also known as: Ōsaka daigaku.
Topics: Laser, Catalysis, Population, Gene, Thin film


Papers
More filters
Journal ArticleDOI
TL;DR: The adult human hippocampus contains mitotically competent neuronal progenitors that can be selectively extracted, and the isolation of these cells may provide a cellular substrate for re-populating the damaged or degenerated adult hippocampus.
Abstract: Neurogenesis persists in the adult mammalian hippocampus. To identify and isolate neuronal progenitor cells of the adult human hippocampus, we transfected ventricular zone-free dissociates of surgically-excised dentate gyrus with DNA encoding humanized green fluorescent protein (hGFP), placed under the control of either the nestin enhancer (E/nestin) or the Tα1 tubulin promoter (P/Tα1), two regulatory regions that direct transcription in neural progenitor cells. The resultant P/Tα1:hGFP+ and E/nestin:enhanced (E)GFP+ cells expressed βIII-tubulin or microtubule-associated protein-2; many incorporated bromodeoxyuridine, indicating their genesis in vitro. Using fluorescence-activated cell sorting, the E/nestin:EGFP+ and P/Tα1:hGFP+ cells were isolated to near purity, and matured antigenically and physiologically as neurons. Thus, the adult human hippocampus contains mitotically competent neuronal progenitors that can be selectively extracted. The isolation of these cells may provide a cellular substrate for re-populating the damaged or degenerated adult hippocampus.

613 citations

Journal ArticleDOI
TL;DR: It is shown that people who have accumulated intra‐abdominal visceral fat frequently have multiple risks and vascular diseases, and “visceral fat syndrome” is a clinical entity compatible with Syndrome X.
Abstract: Syndrome X is a clinical syndrome in which multiple risks cluster in an individual, and it is a common basis of vascular disease in the industrial countries. The molecular basis of Syndrome X, however, has not been elucidated. We have analyzed body fat distribution using CT scan and have shown that people who have accumulated intra-abdominal visceral fat frequently have multiple risks and vascular diseases. Thus, “visceral fat syndrome” is a clinical entity compatible with Syndrome X. To clarify the molecular mechanism of the disorders in visceral fat syndrome, we analyzed the expressed genes in adipose tissue by a large-scale random sequencing. Unexpectedly, visceral fat expressed a variety of the genes for secretory proteins including various bioactive substances; we designated them adipocytokines. One of them, plasminogen activator inhibitor-1, was overproduced in accumulated visceral fat and might contribute to the development of vascular disease. We have also cloned a novel adipose-specific gene named adiponectin. Adiponectin is a collagen-like plasma protein which has an inhibitory effect on proliferation of vascular smooth muscle cells; its plasma levels are paradoxically decreased in obesity. Adipocytokines may play important roles in the development of the disorders in Syndrome X.

612 citations

Journal ArticleDOI
TL;DR: Twenty open reading frames (ORFs) cloned in E. coli exhibited increased resistance to some of the 26 representative antimicrobial agents and chemical compounds tested in this study and gave broader resistance spectra than previously reported.
Abstract: The complete sequencing of bacterial genomes has revealed a large number of drug transporter genes. In Escherichia coli, there are 37 open reading frames (ORFs) assumed to be drug transporter genes on the basis of sequence similarities, although the transport capabilities of most of them have not been established yet. We cloned all 37 putative drug transporter genes in E. coli and investigated their drug resistance phenotypes using an E. coli drug-sensitive mutant as a host. E. coli cells transformed with a plasmid carrying one of 20 ORFs, i.e., fsr, mdfA, yceE, yceL, bcr, emrKY, emrAB, emrD, yidY, yjiO, ydhE, acrAB, cusA (formerly ybdE), yegMNO, acrD, acrEF, yhiUV, emrE, ydgFE, and ybjYZ, exhibited increased resistance to some of the 26 representative antimicrobial agents and chemical compounds tested in this study. Of these 20 ORFs, cusA, yegMNO, ydgFE, yceE, yceL, yidY, and ybjYZ are novel drug resistance genes. The fsr, bcr, yjiO, ydhE, acrD, and yhiUV genes gave broader resistance spectra than previously reported.

612 citations

Journal ArticleDOI
28 Jun 2002-Cell
TL;DR: Results indicate that Rac1/Cdc42 marks special cortical spots where the IQGAP1 and CLIP-170 complex is targeted, leading to a polarized microtubule array and cell polarization.

611 citations

Journal ArticleDOI
TL;DR: The results suggest that Mincle is a receptor that senses nonhomeostatic cell death and thereby induces the production of inflammatory cytokines to drive the infiltration of neutrophils into damaged tissue.
Abstract: Macrophage-inducible C-type lectin (Mincle) is expressed mainly in macrophages and is induced after exposure to various stimuli and stresses. Here we show that Mincle selectively associated with the Fc receptor common gamma-chain and activated macrophages to produce inflammatory cytokines and chemokines. Mincle-expressing cells were activated in the presence of dead cells, and we identified SAP130, a component of small nuclear ribonucloprotein, as a Mincle ligand that is released from dead cells. To investigate whether Mincle is required for normal responses to cell death in vivo, we induced thymocyte death by irradiating mice and found that transient infiltration of neutrophils into the thymus could be blocked by injection of Mincle-specific antibody. Our results suggest that Mincle is a receptor that senses nonhomeostatic cell death and thereby induces the production of inflammatory cytokines to drive the infiltration of neutrophils into damaged tissue.

611 citations


Authors

Showing all 84130 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Thomas C. Südhof191653118007
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
H. S. Chen1792401178529
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Kenji Kangawa1531117110059
Jongmin Lee1502257134772
Yoshio Bando147123480883
Takeo Kanade147799103237
Olaf Reimer14471674359
Yuji Matsuzawa143836116711
Kim Nasmyth14229459231
Tasuku Honjo14171288428
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022637
20216,915
20206,865
20196,462
20186,189