scispace - formally typeset
Search or ask a question
Institution

Osaka University

EducationOsaka, Japan
About: Osaka University is a education organization based out in Osaka, Japan. It is known for research contribution in the topics: Laser & Population. The organization has 83778 authors who have published 185669 publications receiving 5158122 citations. The organization is also known as: Ōsaka daigaku.
Topics: Laser, Population, Catalysis, Thin film, Gene


Papers
More filters
Journal ArticleDOI
01 Nov 1994-Blood
TL;DR: WT1 is a new prognostic factor and a new marker for the detection of MRD in acute leukemia regardless of the presence or absence of tumor-specific DNA markers.

597 citations

Journal ArticleDOI
01 Mar 2007-Nature
TL;DR: The performance of this approach is illustrated by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible.
Abstract: Dynamic force microscopy, which works by detecting the interaction force between the oscillating tip of an atomic force microscope (AFM) and a surface, has been refined to the extent that it can achieve true atomic resolution of insulator, semiconductor and metal surfaces. In a landmark publication in this issue this technique has been used to perform the chemical identification of individual atoms in a multi-element system. The method involves precise quantification of short-range chemical forces between the probed atoms and the AFM tip, and provides a robust and general recognition tool suitable for both cryogenic and room temperature environments. The cover shows a topographic image of a surface alloy made up of silicon (red), tin (blue), and lead atoms (green) in equal proportions on a silicon (111) substrate. This atomic identification method is relevant to a wide range of research areas such as catalysis, materials science and semiconductor technology. Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution1,2. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules3,4,5 and of the electronic properties of magnetic impurity atoms6,7, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution8,9,10, by detecting and precisely measuring11,12,13 the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms14,15 and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible.

596 citations

Journal ArticleDOI
TL;DR: Under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type.
Abstract: Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development.

594 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of alloy composition on microstructural, especially the formation of large intermetallic compounds, and mechanical properties of various Sn-Ag-Cu solder joints were investigated.

593 citations


Authors

Showing all 84130 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Thomas C. Südhof191653118007
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
H. S. Chen1792401178529
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Kenji Kangawa1531117110059
Jongmin Lee1502257134772
Yoshio Bando147123480883
Takeo Kanade147799103237
Olaf Reimer14471674359
Yuji Matsuzawa143836116711
Kim Nasmyth14229459231
Tasuku Honjo14171288428
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022637
20216,914
20206,865
20196,462
20186,189