scispace - formally typeset
Search or ask a question
Institution

Osaka University

EducationOsaka, Japan
About: Osaka University is a education organization based out in Osaka, Japan. It is known for research contribution in the topics: Laser & Population. The organization has 83778 authors who have published 185669 publications receiving 5158122 citations. The organization is also known as: Ōsaka daigaku.
Topics: Laser, Population, Catalysis, Thin film, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that forced expression of either Gata-6 or Gata -4 in embryonic stem (ES) cells is sufficient to induce the proper differentiation program towards ExE, the first report of a physiological differentiation event induced by the ectopic expression of a transcription factor in ES cells.
Abstract: Extraembryonic endoderm (ExE) is differentiated from the inner cell mass of the late blastocyst-stage embryo to form visceral and parietal endoderm, both of which have an important role in early embryogenesis. The essential roles of Gata-6 and Gata-4 on differentiation of visceral endoderm have been identified by analyses of knockout mice. Here we report that forced expression of either Gata-6 or Gata-4 in embryonic stem (ES) cells is sufficient to induce the proper differentiation program towards ExE. We believe that this is the first report of a physiological differentiation event induced by the ectopic expression of a transcription factor in ES cells.

496 citations

Journal ArticleDOI
TL;DR: A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) that showed selective electrical detection of IgE protein and the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G- FETs to be used in biological sensors.
Abstract: A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) is demonstrated. Immunoglobulin E (IgE) aptamers with an approximate height of 3 nm were successfully immobilized on a graphene surface, as confirmed by atomic force microscopy. The aptamer-modified G-FET showed selective electrical detection of IgE protein. From the dependence of the drain current variation on the IgE concentration, the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G-FETs to be used in biological sensors.

495 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the thermal and chemical evolution of star-forming clouds for different gas metallicities, Z, using the model of Omukai, updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation.
Abstract: The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai, updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z ~ 10-5 to 10-3 Z☉ and density ≈105 cm-3. Early on, CMB radiation prevents the gas temperature from falling below TCMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation ≡ (b - a)/a > NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at = NL. Given these assumptions and the initial (Gaussian) distribution of , we compute the fragment mass distribution as a function of metallicity. We find that (1) for Z = 0, all fragments are very massive, 103 M☉, consistent with previous studies; (2) for Z > 10-6 Z☉ a few clumps go through an additional high-density (1010 cm-3) fragmentation phase driven by dust cooling, leading to low-mass fragments; (3) the mass fraction in low-mass fragments is initially very small, but at Z ~ 10-5 Z☉ it becomes dominant and continues to grow as Z is increased; (4) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 < Z/Z☉ < 0.1; and (5) for 0.1 Z☉, the two peaks merge into a single-peaked mass function, which might be regarded as the precursor of the ordinary Salpeter-like initial mass function.

495 citations

Journal ArticleDOI
TL;DR: In this paper, the meso-scale finite element (FE) modeling of textile composites is considered as a powerful tool for homogenisation of mechanical properties, study of stress-strain fields inside the unit cell, determination of damage initiation conditions and sites and simulation of damage development and associated deterioration of the homogenised mechanical properties of the composite.

495 citations

Journal ArticleDOI
TL;DR: It is shown that human pol η can catalyze translesion synthesis past an abasic (AP) site analog, N‐2‐acetylaminofluorene (AAF)‐modified guanine, and a cisplatin‐induced intrastrand cross‐link between two guanines.
Abstract: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η (pol η), which is involved in the replication of damaged DNA. Pol η catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol η can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol η preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol η could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol η could continue chain elongation, whereas pol α could not. Thus, the fidelity of translesion synthesis by human pol η relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.

494 citations


Authors

Showing all 84130 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Thomas C. Südhof191653118007
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
H. S. Chen1792401178529
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Kenji Kangawa1531117110059
Jongmin Lee1502257134772
Yoshio Bando147123480883
Takeo Kanade147799103237
Olaf Reimer14471674359
Yuji Matsuzawa143836116711
Kim Nasmyth14229459231
Tasuku Honjo14171288428
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022637
20216,914
20206,865
20196,462
20186,189