scispace - formally typeset
Search or ask a question
Institution

Osaka University

EducationOsaka, Japan
About: Osaka University is a education organization based out in Osaka, Japan. It is known for research contribution in the topics: Laser & Population. The organization has 83778 authors who have published 185669 publications receiving 5158122 citations. The organization is also known as: Ōsaka daigaku.
Topics: Laser, Population, Catalysis, Thin film, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: The role of IL‐6 in regulating Th17/Treg balance is reviewed and the critical functions ofIL‐6 and Th17 in immunity and immune‐pathology are described.
Abstract: IL-6 is a pleiotropic cytokine involved in the physiology of virtually every organ system. Recent studies have demonstrated that IL-6 has a very important role in regulating the balance between IL-17-producing Th17 cells and regulatory T cells (Treg). The two T-cell subsets play prominent roles in immune functions: Th17 cell is a key player in the pathogenesis of autoimmune diseases and protection against bacterial infections, while Treg functions to restrain excessive effector T-cell responses. IL-6 induces the development of Th17 cells from naive T cells together with TGF-β; in contrast, IL-6 inhibits TGF-β-induced Treg differentiation. Dysregulation or overproduction of IL-6 leads to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA), in which Th17 cells are considered to be the primary cause of pathology. Given the critical role of IL-6 in altering the balance between Treg and Th17 cells, controlling IL-6 activities is potentially an effective approach in the treatment of various autoimmune and inflammatory diseases. Here, we review the role of IL-6 in regulating Th17/Treg balance and describe the critical functions of IL-6 and Th17 in immunity and immune-pathology.

1,299 citations

Journal ArticleDOI
TL;DR: Findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.
Abstract: MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.

1,299 citations

Journal ArticleDOI
TL;DR: Results show that TLR6 recognizes MALP-2 cooperatively with TLR2, and appears to discriminate between the N-terminal lipoylated structures of MALp-2 and lipopeptides derived from other bacteria.
Abstract: Bacterial lipoproteins (BLP) trigger immune responses via Toll-like receptor 2 (TLR2) and their immunostimulatory properties are attributed to the presence of a lipoylated N-terminus. Most BLP are triacylated at the N-terminus cysteine residue, but mycoplasmal macrophage-activating lipopeptide-2 kD (MALP-2) is only diacylated. Here we show that TLR6-deficient (TLR6 –/– ) cells are unresponsive to MALP-2 but retain their normal responses to lipopeptides of other bacterial origins. Reconstitution experiments in TLR2 –/– TLR6 –/– embryonic fibroblasts reveal that coexpression of TLR2 and TLR6 is absolutely required for MALP-2 responsiveness. Taken together, these results show that TLR6 recognizes MALP-2 cooperatively with TLR2, and appears to discriminate between the N-terminal lipoylated structures of MALP-2 and lipopeptides derived from other bacteria.

1,298 citations

Journal ArticleDOI
Suyong Choi1, S. L. Olsen, Kazuo Abe, T. Abe  +172 moreInstitutions (46)
TL;DR: In this article, a narrow charmonium-like state produced in the exclusive decay process B+/--->K+/-pi(+)pi(-)J/psi has been observed, which has a mass of 3872.0+/-0.6(stat)+/- 0.5(syst) MeV.
Abstract: We report the observation of a narrow charmoniumlike state produced in the exclusive decay process B+/--->K+/-pi(+)pi(-)J/psi. This state, which decays into pi(+)pi(-)J/psi, has a mass of 3872.0+/-0.6(stat)+/-0.5(syst) MeV, a value that is very near the M(D0)+M(D(*0)) mass threshold. The results are based on an analysis of 152M B-Bmacr; events collected at the Upsilon(4S) resonance in the Belle detector at the KEKB collider. The signal has a statistical significance that is in excess of 10sigma.

1,294 citations

Journal ArticleDOI
21 Dec 1990-Cell
TL;DR: A cloned gp130 could associate with a complex of IL-6 and solubleIL-6-R and transduce the growth signal when expressed in a murine IL-3-dependent cell line and confirmed that a gp130 is involved in the formation of high affinity IL- 6 binding sites.

1,292 citations


Authors

Showing all 84130 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Thomas C. Südhof191653118007
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
H. S. Chen1792401178529
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Kenji Kangawa1531117110059
Jongmin Lee1502257134772
Yoshio Bando147123480883
Takeo Kanade147799103237
Olaf Reimer14471674359
Yuji Matsuzawa143836116711
Kim Nasmyth14229459231
Tasuku Honjo14171288428
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022637
20216,914
20206,865
20196,462
20186,189