scispace - formally typeset
Search or ask a question
Institution

Osaka University

EducationOsaka, Japan
About: Osaka University is a education organization based out in Osaka, Japan. It is known for research contribution in the topics: Laser & Population. The organization has 83778 authors who have published 185669 publications receiving 5158122 citations. The organization is also known as: Ōsaka daigaku.
Topics: Laser, Population, Catalysis, Thin film, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: A coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier is demonstrated and the realization of bistable toggle switching using the coherentPrecessions is demonstrated.
Abstract: The magnetization direction of a metallic magnet has generally been controlled by a magnetic field or by spin-current injection into nanosized magnetic cells. Both these methods use an electric current to control the magnetization direction; therefore, they are energy consuming. Magnetization control using an electric field is considered desirable because of its expected ultra-low power consumption and coherent behaviour. Previous experimental approaches towards achieving voltage control of magnetization switching have used single ferromagnetic layers with and without piezoelectric materials, ferromagnetic semiconductors, multiferroic materials, and their hybrid systems. However, the coherent control of magnetization using voltage signals has not thus far been realized. Also, bistable magnetization switching (which is essential in information storage) possesses intrinsic difficulties because an electric field does not break time-reversal symmetry. Here, we demonstrate a coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier. Furthermore, we demonstrate the realization of bistable toggle switching using the coherent precessions. The estimated power consumption for single switching in the ideal equivalent switching circuit can be of the order of 10(4)k(B)T, suggesting a reduction factor of 1/500 when compared with that of the spin-current-injection switching process.

725 citations

Journal ArticleDOI
TL;DR: This paper investigates the algebraic structures of fuzzy grades under the operations of join ⊔, meet ⊓, and negation ┐ which are defined by using the extension principle, and shows that convex fuzzy grades form a commutative semiring and normal convex fuzzies form a distributive lattice under ⊢ and ⊡.
Abstract: The concept of fuzzy sets of type 2 has been defined by L. A. Zadeh as an extension of ordinary fuzzy sets. The fuzzy set of type 2 can be characterized by a fuzzy membership function the grade (or fuzzy grade) of which is a fuzzy set in the unit interval [0, 1] rather than a point in [0, 1]. This paper investigates the algebraic structures of fuzzy grades under the operations of join ⊔, meet ⊔, and negation ┐ which are defined by using the extension principle, and shows that convex fuzzy grades form a commutative semiring and normal convex fuzzy grades form a distributive lattice under ⊔ and ⊓. Moreover, the algebraic properties of fuzzy grades under the operations and which are slightly different from ⊔ and ⊓, respectively, are briefly discussed.

725 citations

Journal ArticleDOI
TL;DR: RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses, which may have therapeutic implications for immune regulation.
Abstract: RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-alpha/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-kappaB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.

724 citations

Journal ArticleDOI
27 Nov 2002-Cell
TL;DR: It is shown here that binding sites for Runt domain transcription factors are essential for CD4 silencer function at both stages, and that different Runx family members are required to fulfill unique functions at each stage.

723 citations

Journal ArticleDOI
TL;DR: Porcupine, a protein with structural similarities to membrane-bound O-acyltransferases, is required for Ser209-dependent acylation, as well as for Wnt-3a transport from the ER for secretion, which strongly suggest that Wnt protein requires a particular lipid modification for proper intracellular transport during the secretory process.

723 citations


Authors

Showing all 84130 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Thomas C. Südhof191653118007
Tadamitsu Kishimoto1811067130860
Yusuke Nakamura1792076160313
H. S. Chen1792401178529
Hyun-Chul Kim1764076183227
Masayuki Yamamoto1711576123028
Kenji Kangawa1531117110059
Jongmin Lee1502257134772
Yoshio Bando147123480883
Takeo Kanade147799103237
Olaf Reimer14471674359
Yuji Matsuzawa143836116711
Kim Nasmyth14229459231
Tasuku Honjo14171288428
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022637
20216,914
20206,865
20196,462
20186,189