scispace - formally typeset
Search or ask a question

Showing papers by "Pacific Northwest National Laboratory published in 2016"



Journal ArticleDOI
Mingxun Wang1, Jeremy Carver1, Vanessa V. Phelan2, Laura M. Sanchez2, Neha Garg2, Yao Peng1, Don D. Nguyen1, Jeramie D. Watrous2, Clifford A. Kapono1, Tal Luzzatto-Knaan2, Carla Porto2, Amina Bouslimani2, Alexey V. Melnik2, Michael J. Meehan2, Wei-Ting Liu3, Max Crüsemann4, Paul D. Boudreau4, Eduardo Esquenazi, Mario Sandoval-Calderón5, Roland D. Kersten6, Laura A. Pace2, Robert A. Quinn7, Katherine R. Duncan8, Cheng-Chih Hsu1, Dimitrios J. Floros1, Ronnie G. Gavilan, Karin Kleigrewe4, Trent R. Northen9, Rachel J. Dutton10, Delphine Parrot11, Erin E. Carlson12, Bertrand Aigle13, Charlotte Frydenlund Michelsen14, Lars Jelsbak14, Christian Sohlenkamp5, Pavel A. Pevzner1, Anna Edlund15, Anna Edlund16, Jeffrey S. McLean16, Jeffrey S. McLean17, Jörn Piel18, Brian T. Murphy19, Lena Gerwick4, Chih-Chuang Liaw20, Yu-Liang Yang21, Hans-Ulrich Humpf22, Maria Maansson14, Robert A. Keyzers23, Amy C. Sims24, Andrew R. Johnson25, Ashley M. Sidebottom25, Brian E. Sedio26, Andreas Klitgaard14, Charles B. Larson4, Charles B. Larson2, Cristopher A. Boya P., Daniel Torres-Mendoza, David Gonzalez2, Denise Brentan Silva27, Denise Brentan Silva28, Lucas Miranda Marques27, Daniel P. Demarque27, Egle Pociute, Ellis C. O’Neill4, Enora Briand11, Enora Briand4, Eric J. N. Helfrich18, Eve A. Granatosky29, Evgenia Glukhov4, Florian Ryffel18, Hailey Houson, Hosein Mohimani1, Jenan J. Kharbush4, Yi Zeng1, Julia A. Vorholt18, Kenji L. Kurita30, Pep Charusanti1, Kerry L. McPhail31, Kristian Fog Nielsen14, Lisa Vuong, Maryam Elfeki19, Matthew F. Traxler32, Niclas Engene33, Nobuhiro Koyama2, Oliver B. Vining31, Ralph S. Baric24, Ricardo Pianta Rodrigues da Silva27, Samantha J. Mascuch4, Sophie Tomasi11, Stefan Jenkins9, Venkat R. Macherla, Thomas Hoffman, Vinayak Agarwal4, Philip G. Williams34, Jingqui Dai34, Ram P. Neupane34, Joshua R. Gurr34, Andrés M. C. Rodríguez27, Anne Lamsa1, Chen Zhang1, Kathleen Dorrestein2, Brendan M. Duggan2, Jehad Almaliti2, Pierre-Marie Allard35, Prasad Phapale, Louis-Félix Nothias36, Theodore Alexandrov, Marc Litaudon36, Jean-Luc Wolfender35, Jennifer E. Kyle37, Thomas O. Metz37, Tyler Peryea38, Dac-Trung Nguyen38, Danielle VanLeer38, Paul Shinn38, Ajit Jadhav38, Rolf Müller, Katrina M. Waters37, Wenyuan Shi16, Xueting Liu39, Lixin Zhang39, Rob Knight1, Paul R. Jensen4, Bernhard O. Palsson1, Kit Pogliano1, Roger G. Linington30, Marcelino Gutiérrez, Norberto Peporine Lopes27, William H. Gerwick2, William H. Gerwick4, Bradley S. Moore4, Bradley S. Moore2, Pieter C. Dorrestein4, Pieter C. Dorrestein2, Nuno Bandeira1, Nuno Bandeira2 
TL;DR: In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations and data-driven social-networking should facilitate identification of spectra and foster collaborations.
Abstract: The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.

2,365 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as a cathode.
Abstract: Rechargeable aqueous batteries such as alkaline zinc/manganese oxide batteries are highly desirable for large-scale energy storage owing to their low cost and high safety; however, cycling stability is a major issue for their applications. Here we demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as the cathode. We show that a chemical conversion reaction mechanism between α-MnO2 and H+ is mainly responsible for the good performance of the system. This includes an operating voltage of 1.44 V, a capacity of 285 mAh g−1 (MnO2), and capacity retention of 92% over 5,000 cycles. The Zn metal anode also shows high stability. This finding opens new opportunities for the development of low-cost, high-performance rechargeable aqueous batteries. Rechargeable aqueous batteries are attractive owing to their relatively low cost and safety. Here the authors report an aqueous zinc/manganese oxide battery that operates via a conversion reaction mechanism and exhibits a long-term cycling stability.

1,965 citations


Journal ArticleDOI
08 Jul 2016-Science
TL;DR: Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.
Abstract: Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

1,317 citations


Journal ArticleDOI
TL;DR: A multidisciplinary approach is highly required to enable the formation of robust SEI for highly efficient energy storage systems.
Abstract: Lithium metal batteries (LMBs) are among the most promising candidates of high-energy-density devices for advanced energy storage. However, the growth of dendrites greatly hinders the practical applications of LMBs in portable electronics and electric vehicles. Constructing stable and efficient solid electrolyte interphase (SEI) is among the most effective strategies to inhibit the dendrite growth and thus to achieve a superior cycling performance. In this review, the mechanisms of SEI formation and models of SEI structure are briefly summarized. The analysis methods to probe the surface chemistry, surface morphology, electrochemical property, dynamic characteristics of SEI layer are emphasized. The critical factors affecting the SEI formation, such as electrolyte component, temperature, current density, are comprehensively debated. The efficient methods to modify SEI layer with the introduction of new electrolyte system and additives, ex-situ-formed protective layer, as well as electrode design, are summarized. Although these works afford new insights into SEI research, robust and precise routes for SEI modification with well-designed structure, as well as understanding of the connection between structure and electrochemical performance, is still inadequate. A multidisciplinary approach is highly required to enable the formation of robust SEI for highly efficient energy storage systems.

1,266 citations


Journal ArticleDOI
25 Feb 2016
TL;DR: Modification of modified 16S rRNA gene and internal transcribed spacer (ITS) primers for archaea/bacteria and fungi with nonaquatic samples demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types.
Abstract: Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of data sets amplified with varied primers requires attention. Here, we examined the performance of modified 16S rRNA gene and internal transcribed spacer (ITS) primers for archaea/bacteria and fungi, respectively, with nonaquatic samples. We moved primer bar codes to the 5' end, allowing for a range of different 3' primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4 and 5 of the 16S rRNA gene. We additionally demonstrated that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and clade SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies. IMPORTANCE We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art.

1,222 citations


Journal ArticleDOI
TL;DR: The molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species are discussed.
Abstract: Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

1,047 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify potential global impacts of different negative emissions technologies on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application.
Abstract: To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

974 citations


Journal ArticleDOI
TL;DR: A review of mesoporous materials can be found in this paper, where the authors summarize the primary methods for preparing mesopore materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.
Abstract: To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications. Mesoporous materials are finding increasing uses in energy conversion and storage devices. This Review highlights recent developments in the synthesis of mesoporous materials and their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.

949 citations


Journal ArticleDOI
01 Dec 2016-Nature
TL;DR: In this article, the authors present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia, and provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections.
Abstract: The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

787 citations


Journal ArticleDOI
28 Jul 2016-Cell
TL;DR: A view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC is provided.

Journal ArticleDOI
TL;DR: The High-ResMIP (High-resolution Model Intercomparison Project) as mentioned in this paper is a multi-model approach to the systematic investigation of the impact of horizontal resolution on the simulated mean climate and its variability.
Abstract: . Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

Journal ArticleDOI
TL;DR: A review of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of identification, characterization, transport and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bio-aerosols play in the Earth system.

Journal ArticleDOI
TL;DR: A comprehensive review of studies on Asian aerosols, monsoons, and their interactions is provided in this article, where a new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosolmonsoon climate system, subject to external forcing of global warming, anthropogenic aerosol, and land use and change.
Abstract: The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

Journal ArticleDOI
TL;DR: In this article, an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts.

Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: An appreciation of the complexity of interactions among the microbiome and the host's diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate this dynamic interface, is paramount for developing precision diagnostics and therapies based on the microbiome.
Abstract: Rapid advances in DNA sequencing, metabolomics, proteomics and computational tools are dramatically increasing access to the microbiome and identification of its links with disease. In particular, time-series studies and multiple molecular perspectives are facilitating microbiome-wide association studies, which are analogous to genome-wide association studies. Early findings point to actionable outcomes of microbiome-wide association studies, although their clinical application has yet to be approved. An appreciation of the complexity of interactions among the microbiome and the host's diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate this dynamic interface, is paramount for developing precision diagnostics and therapies that are based on the microbiome.

Journal ArticleDOI
TL;DR: This work suggests strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.
Abstract: The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

Journal ArticleDOI
TL;DR: In this paper, a total organic aqueous redox flow battery (OARFB) is reported, using low-cost and sustainable methyl viologen (MV, anolyte) and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-HO-TEMPO, catholyte), and benign NaCl supporting electrolyte.
Abstract: Increasing worldwide energy demands and rising CO2 emissions have motivated a search for new technologies to take advantage of renewables such as solar and wind energies. Redox flow batteries (RFBs) with their high power density, high energy efficiency, scalability (up to MW and MWh), and safety features are one suitable option for integrating such energy sources and overcoming their intermittency. However, resource limitation and high system costs of current RFB technologies impede wide implementation. Here, a total organic aqueous redox flow battery (OARFB) is reported, using low-cost and sustainable methyl viologen (MV, anolyte) and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-HO-TEMPO, catholyte), and benign NaCl supporting electrolyte. The electrochemical properties of the organic redox active materials are studied using cyclic voltammetry and rotating disk electrode voltammetry. The MV/4-HO-TEMPO ARFB has an exceptionally high cell voltage, 1.25 V. Prototypes of the organic ARFB can be operated at high current densities ranging from 20 to 100 mA cm2, and deliver stable capacity for 100 cycles with nearly 100% Coulombic efficiency. The MV/4-HO-TEMPO ARFB displays attractive technical merits and thus represents a major advance in ARFBs.

Journal ArticleDOI
TL;DR: Cell sorting revealed that the expression of stationary markers is associated with a 100–1,000-fold increase in the likelihood of survival to antibiotic challenge and the adenosine triphosphate level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics.
Abstract: Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics(1). Persisters are associated with chronic infections and antibiotic treatment failure(1-3). In Escherichia coli, toxin-antitoxin modules have been linked to persister formation(4-6). The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting toxin-antitoxin modules in S. aureus did not affect the level of persisters. Here, we show that S. aureus persisters are produced due to a stochastic entrance into the stationary phase accompanied by a drop in intracellular adenosine triphosphate. Cells expressing stationary-state markers are present throughout the growth phase, and increase in frequency with cell density. Cell sorting revealed that the expression of stationary markers is associated with a 100-1,000-fold increase in the likelihood of survival to antibiotic challenge. The adenosine triphosphate level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics.

Journal ArticleDOI
TL;DR: A review of recent theoretical studies and important mechanisms on aerosol-cloud interactions is presented in this article, which discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems.
Abstract: Over the past decade, the number of studies that investigate aerosol–cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol–cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, 2) the feedbacks between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and 3) the significance of cloud–aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol–cloud interactions and discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems. The authors summarize the main obstacles preventing the science from making a leap—for exampl...

Journal ArticleDOI
TL;DR: In this article, a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets is presented.
Abstract: Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

Journal ArticleDOI
TL;DR: The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs).
Abstract: The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^{2}.

Journal ArticleDOI
TL;DR: These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low W IMP masses for spin-independent WIMp-nucleon scattering.
Abstract: New results are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 52 kg of C_{3}F_{8} located in the SNOLAB underground laboratory. As in previous PICO bubble chambers, PICO-60 C_{3}F_{8} exhibits excellent electron recoil and alpha decay rejection, and the observed multiple-scattering neutron rate indicates a single-scatter neutron background of less than one event per month. A blind analysis of an efficiency-corrected 1167-kg day exposure at a 3.3-keV thermodynamic threshold reveals no single-scattering nuclear recoil candidates, consistent with the predicted background. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.4×10^{-41} cm^{2} for a 30-GeV c^{-2} WIMP, more than 1 order of magnitude improvement from previous PICO results.

Journal ArticleDOI
TL;DR: In this article, an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high Coulombic efficiency (>99.8%) is reported.
Abstract: Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly because of the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (>99.8%) is reported for the first time. This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols, which minimize the corrosion of the in situly formed Li metal anode.

Journal ArticleDOI
TL;DR: A high-throughput computational screening of large databases of metal–organic frameworks is carried out and it is affirm that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.
Abstract: Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

Journal ArticleDOI
TL;DR: In this paper, a new method of applying Deep Eutectic Solvents (DES) for extracting lignin from woody biomass with high yield and high purity was reported.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 107y and potential incorporation into the human body.

Journal ArticleDOI
11 Jan 2016-ACS Nano
TL;DR: This work achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb(3+)) in the UCNP shell, which bridged the energy transfer from the dye to theUCNP core.
Abstract: Near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. Here, we achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb3+) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.

Journal ArticleDOI
TL;DR: Analysis of plant microbiome data has brought about a paradigm shift in understanding of the diverse structure and functioning of the plant microbiome with respect to the high interplay of bacteria, archaea, fungi, and protists; the high specificity even at cultivar level; the vertical transmission of core microbiomes; the extraordinary function of endophytes; and several unexpected functions and metabolic interactions.
Abstract: The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.

Journal ArticleDOI
TL;DR: In this article, the authors suggest that model structures should reflect real-world processes, parameters should be calibrated to match model outputs with observations, and external forcing variables should accurately prescribe the environmental conditions that soils experience.
Abstract: Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.