scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors employed atomic simulations to compute the resistance to glide posed by two kinds of interfaces: coherent and semicoherent interfaces, and incoherent interfaces offer significant resistance to crossing of glide dislocations but for different reasons.

295 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations are also constructed.
Abstract: [1] The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high–vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile retrievals. This paper provides an introduction to the ARM site best estimate validation products and characterizes the accuracy of the AIRS team version 4 atmospheric temperature and water vapor retrievals using the ARM products. The AIRS retrievals over tropical ocean are found to have very good accuracy for both temperature and water vapor, with RMS errors approaching the theoretical expectation for clear sky conditions, while retrievals over a midlatitude land site have poorer performance. The results demonstrate the importance of using specialized “truth” sites for accurate assessment of the advanced sounder performance and motivate the continued refinement of the AIRS science team retrieval algorithm, particularly for retrievals over land.

295 citations

Journal ArticleDOI
TL;DR: This review is discussing the interest of both nano-objects and nano-engineered and/or nanostructured materials for the rational design of bio-functionalized electrodes and related (bio)sensing systems.
Abstract: Recent years have faced stimulating developments in the functionalization of electrode surfaces with biological materials, notably due to the significant input of nanosciences and nanotechnology. In this review (over 450 references), we are discussing the interest of both nano-objects (metal nanoparticles and quantum dots, carbon nanotubes and graphene) and nano-engineered and/or nanostructured materials (template-based materials, advanced organic polymers) for the rational design of bio-functionalized electrodes and related (bio)sensing systems. The attractiveness of such nanomaterials relies not only on their ability to act as effective immobilization matrices, which are, e.g., likely to enhance the long-term stability of bioelectrochemical devices, but also on their intrinsic and unique features (large surface areas, electrocatalytic properties, controlled morphology and structure, possible use as labels) that can be advantageously combined with the functioning of biomolecules, thus contributing to improved bioelectrode performance in terms of sensitivity and selectivity (enzymatic biosensors, DNA sensors, immunosensors and cell sensors) or power (biofuel cells).

295 citations

Journal ArticleDOI
TL;DR: In this article, the effect of grain boundary energy and disorientation angle on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energies and the mean point defect formation energies.
Abstract: The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained $\ensuremath{\approx}$170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 \AA{} of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-$\ensuremath{\Sigma}$ grain boundaries (e.g., the $\ensuremath{\Sigma}3$${112}$ twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and $\ensuremath{\Sigma}$ designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have $\ensuremath{\approx}$80$%$ more grain boundary sites per area and $\ensuremath{\approx}$300$%$ greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6--7 \AA{} versus 10--11 \AA{} for vacancies and interstitials, respectively).

295 citations

Journal ArticleDOI
TL;DR: Recently, metal-organic frameworks (MOFs) have emerged as a new type of attractive precursors for the synthesis of PGM-free catalysts, which has led to encouraging performance improvement as discussed by the authors.

294 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619