scispace - formally typeset
Search or ask a question
Institution

Pacific Northwest National Laboratory

FacilityRichland, Washington, United States
About: Pacific Northwest National Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publications receiving 1120489 citations. The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Ion, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a self-supported, hierarchical, porous, nitrogen-doped carbon (NC)@CuCo2Nx/carbon fiber (CF) is fabricated and used as an efficient bifunctional electrocatalyst for both HER and OER in alkaline solutions with excellent activity and stability.
Abstract: Highly active and stable bifunctional electrocatalysts for overall water splitting are important for clean and renewable energy technologies. The development of energy-saving electrocatalysts for hydrogen evolution reaction (HER) by replacing the sluggish oxygen evolution reaction (OER) with a thermodynamically favorable electrochemical oxidation (ECO) reaction has attracted increasing attention. In this study, a self-supported, hierarchical, porous, nitrogen-doped carbon (NC)@CuCo2Nx/carbon fiber (CF) is fabricated and used as an efficient bifunctional electrocatalyst for both HER and OER in alkaline solutions with excellent activity and stability. Moreover, a two-electrode electrolyzer is assembled using the NC@CuCo2Nx/CF as an electrocatalyst at both cathode and anode electrodes for H2 production and selective ECO of benzyl alcohol with high conversion and selectivity. The excellent electrocatalytic activity is proposed to be mainly due to the hierarchical architecture beneficial for exposing more catalytic active sites, enhancing mass transport. Density functional theoretical calculations reveal that the adsorption energies of key species can be modulated due to the synergistic effect between CoN and CuN. This work provides a reference for the development of high-performance bifunctional electrocatalysts for simultaneous production of H2 and high-value-added fine chemicals.

241 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the trends in 108 peer-reviewed electronic tagging effect studies focused on intracoleomic implantation to determine opportunities for future research, and advocate for rigorous controlled manipulations based on statistical designs that have adequate power, account for inter-individual variation, and include controls and shams, and consider how biotic factors (e.g., sex, age, size) influence tagging outcomes.
Abstract: Early approaches to surgical implantation of electronic tags in fish were often through trial and error, however, in recent years there has been an interest in using scientific research to identify techniques and procedures that improve the outcome of surgical procedures and determine the effects of tagging on individuals. Here we summarize the trends in 108 peer-reviewed electronic tagging effect studies focused on intracoleomic implantation to determine opportunities for future research. To date, almost all of the studies have been conducted in freshwater, typically in laboratory environments, and have focused on biotelemetry devices. The majority of studies have focused on salmonids, cyprinids, ictalurids and centrarchids, with a regional bias towards North America, Europe and Australia. Most studies have focused on determining whether there is a negative effect of tagging relative to control fish, with proportionally fewer that have contrasted different aspects of the surgical procedure (e.g., methods of sterilization, incision location, wound closure material) that could advance the discipline. Many of these studies included routine endpoints such as mortality, growth, healing and tag retention, with fewer addressing sublethal measures such as swimming ability, predator avoidance, physiological costs, or fitness. Continued research is needed to further elevate the practice of electronic tag implantation in fish in order to ensure that the data generated are relevant to untagged conspecifics (i.e., no long-term behavioural or physiological consequences) and the surgical procedure does not impair the health and welfare status of the tagged fish. To that end, we advocate for (1) rigorous controlled manipulations based on statistical designs that have adequate power, account for inter-individual variation, and include controls and shams, (2) studies that transcend the laboratory and the field with more studies in marine waters, (3) incorporation of knowledge and techniques emerging from the medical and veterinary disciplines, (4) addressing all components of the surgical event, (5) comparative studies that evaluate the same surgical techniques on multiple species and in different environments, (6) consideration of how biotic factors (e.g., sex, age, size) influence tagging outcomes, and (7) studies that cover a range of endpoints over ecologically relevant time periods.

241 citations

Journal ArticleDOI
TL;DR: This paper showed that the dominant source of C in the methanol product gradually shifts from CO 2 to CO as the temperature is lowered, with formate playing a spectator co-adsorbate role.

241 citations

Journal ArticleDOI
TL;DR: In this article, the performance properties of three mode-estimation block-processing algorithms from the perspective of near real-time automated stability assessment are demonstrated and examined, and issues addressed include: stability assessment requirements, automated subset selecting identified modes; using algorithms in an automated format; data assumptions and quality; and expected algorithm estimation performance.
Abstract: The frequency and damping of electromechanical modes offer considerable insight into the dynamic stability properties of a power system. The performance properties of three mode-estimation block-processing algorithms from the perspective of near real-time automated stability assessment are demonstrated and examined. The algorithms are: the extended modified Yule Walker (YW); extended modified Yule Walker with spectral analysis (YWS); and sub-space system identification (N4SID). The YW and N4SID have been introduced in previous publications while the YWS is introduced here. Issues addressed include: stability assessment requirements; automated subset selecting identified modes; using algorithms in an automated format; data assumptions and quality; and expected algorithm estimation performance.

241 citations

Book ChapterDOI
27 Sep 2011
TL;DR: Autonomous Vehicular Clouds (AVC) as mentioned in this paper is a vision for vehicular networks, embedded devices, and cloud computing that enables the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources.
Abstract: The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices, and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, Autonomous Vehicular Clouds (AVCs). A key features distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theatres of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities, and smart electric power grids, will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time, and with right-sized resources.

241 citations


Authors

Showing all 11848 results

NameH-indexPapersCitations
Yi Cui2201015199725
Derek R. Lovley16858295315
Xiaoyuan Chen14999489870
Richard D. Smith140118079758
Taeghwan Hyeon13956375814
Jun Liu13861677099
Federico Capasso134118976957
Jillian F. Banfield12756260687
Mary M. Horowitz12755756539
Frederick R. Appelbaum12767766632
Matthew Jones125116196909
Rainer Storb12390558780
Zhifeng Ren12269571212
Wei Chen122194689460
Thomas E. Mallouk12254952593
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Pennsylvania State University
196.8K papers, 8.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023130
2022459
20211,794
20201,795
20191,598
20181,619